ebook img

Mode-locked picosecond pulse generation from an octave-spanning supercontinuum PDF

0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mode-locked picosecond pulse generation from an octave-spanning supercontinuum

Mode-locked picosecond pulse generation from an octave-spanning supercontinuum D.KielpinskiandM.G.Pullen 1 CentreforQuantumDynamics,GriffithUniversity,NathanQLD4111,Australia 1 0 J.CanningandM.Stevenson 2 InterdisciplinaryPhotonicsLaboratories(iPL),SchoolofChemistry,MadsenBuildingF09, n UniversityofSydney,Sydney,NSW,2006,Australia a J P.S.WestbrookandK.S.Feder 3 OFSLaboratories,Somerset,NewJersey08873,USA 2 d.kielpinski@griffith.edu.au ] s c Abstract: We generate mode-locked picosecond pulses near 1110 nm i t by spectrallyslicing and reamplifyingan octave-spanningsupercontinuum p sourcepumpedat1550nm.The1110nmpulsesareneartransform-limited, o with1.7psdurationovertheir1.2nmbandwidth,andexhibithighinterpulse . s coherence.Boththesupercontinuumsourceandthepulsesynthesissystem c i are implemented completely in fiber. The versatile source construction s suggests that pulse synthesis from sliced supercontinuummay be a useful y h techniqueacrossthe1000-2000nmwavelengthrange. p © 2011 OpticalSocietyofAmerica [ Referencesandlinks 1 v 1. J.Hall,”OpticalFrequencyMeasurement:40YearsofTechnologyRevolutions”,IEEEJ.Sel.Top.Quant.Elec. 8 6,1136(2000). 4 2. T.Udem,R.Holzwarth,andT.W.Ha¨nsch,”OpticalFrequencyMetrology”,Nature416,233(2002). 3 3. L.-S.Ma,Z.Bi,A.Bartels,L.Robertsson,M.Zucco,R.S.Windeler,G.Wilpers,C.Oates,L.Hollberg,and 4 S.A.Diddams,”OpticalFrequencySynthesisandComparisonwithUncertaintyatthe10−19 Level”,Science 303,1843(2004). . 1 4. D.J.Jones,S.A.Diddams,M.S.Taubman,S.T.Cundiff,L.-S.Ma,andJ.L.Hall,”Frequencycombgeneration 0 usingfemtosecondpulsesandcross-phasemodulationinopticalfiberatarbitrarycenterfrequencies”,Opt.Lett. 1 25,308(2000). 1 5. T.R.Schibli,K.Minoshima,F.-L.Hong,H.Inaba,Y.Bitou,A.Onae,andH.Matsumoto,”Phase-lockedwidely : tunableopticalsingle-frequencygeneratorbasedonafemtosecondcomb”,Opt.Lett.30,2323(2005). v 6. M.Vainio,M.Merimaa,andK.Nyholm,”Opticalamplifierforfemtosecondfrequencycombmeasurementsnear Xi 633nm”,Appl.Phys.B81,1053(2005). 7. F.C.Cruz,M.C.Stowe,andJ.Ye,”Taperedsemiconductoramplifiersforopticalfrequencycombsinthenear r infrared”,Opt.Lett.31,1337(2006). a 8. H.S.Moon,E.B.Kim,S.E.Park,andC.Y.Park,”Selectionandamplificationofmodesofanopticalfrequency combusingafemtosecondlaserinjection-lockingtechnique”,Appl.Phys.Lett.89,181110(2006). 9. T.Morioka,K.Mori,andM.Saruwatari,”MoreThan100-Wavelength-ChannelPicosecondOpticalPulseGen- erationFromSingleLaserSourceUsingSupercontinuumInOpticalFibres”,Electron.Lett.29,862(1993). 10. S.V.Smirnov,J.D.Ania-Castanon,T.J.Ellingham,S.M.Kobtsev,S.Kukarina,andS.K.Turitsyn,”Optical spectralbroadeningandsupercontinuumgenerationintelecomapplications”,Opt.FiberTechnol.12,122(2006). 11. O¨.Boyraz,J.Kim,M.N.Islam,andB.Jalali,”10Gb/sMultipleWavelength,CoherentShortPulseSourceBased onSpectralCarvingofSupercontinuumGeneratedinFibers”,J.LightwaveTech.18,2167(2000). 12. J.H.V.Price,K.Furusawa,T.M.Monro,L.Lefort,andD.J.Richardson,”Tunable,femtosecondpulsesource operatingintherange1.06-1.33m mbasedonanYb3+-dopedholeyfiberamplifier”,J.Opt.Soc.Am.B19, 1286(2002). 13. J.Porta,A.B.Grudinin,Z.J.Chen,J.D.Minelly,andN.J.Traynor,”Environmentallystablepicosecondytter- biumfiberlaserwithabroadtuningrange”,Opt.Lett.23,615(1998). 14. L.A.Gomes,L.Orsila,T.Jouhti,andO.G.Okhotnikov,”PicosecondSESAM-BasedYtterbiumMode-Locked FiberLasers”,IEEEJ.Sel.Top.Quant.Elec.10,129(2004). 15. P.S. Westbrook, J. W.Nicholson, K. S. Feder, Y. Li, and T. Brown, ”Supercontinuum generation in a fiber grating”,Appl.Phys.Lett.85,4600(2004). 16. J.Dudley,G.Genty,andS.Coen,”Supercontinuumgenerationinphotoniccrystalfiber”,Rev.Mod.Phys.78, 1135(2006). 17. CorningSMF28eopticalfiberproductinformation,availableathttp://www.corning.com 18. M.R.Mokhtar,C.S.Goh,S.A.Butler,S.Y.Set,K.Kikuchi,D.J.Richardson,andM.Ibsen,”FibreBragg gratingcompression-tunedover110nm”,Electron.Lett.39,509(2003). 1. Introduction The advent of optical frequency counting techniques using octave-spanning supercontinuum (SC) generation [1, 2] suggests that similar technology can prove useful in the synthesis of optical radiation. Much useful work has been done to show the possibilities of optical frequency synthesis by phase-locking a stable single-frequencylaser to an optical frequency counter.Such techniquescan achieveultimate frequencyresolutionof a partin 1019 [3] with broad and fast tunability over wide frequency ranges [4, 5]. More direct approaches obtain highlycoherentlightbyamplifyinga singlecombline[6] ora bandofcomblines[7],or by injection-lockinganexternallaseroscillatorwithasinglecombline[8]. Onthetime-domainside,spectralslicingofrelativelynarrowband(<200nm)supercontinua hasbeenusedtogeneratepicosecondpulsetrainsinhundredsofwavelengthchannelsatonce [9,10]andthesepulsesareknowntohavecoherencetimesgreaterthanthepulseduration[11]. Ramanself-frequencyshiftingalsoallowsthegenerationofpspulsesatvariouswavelengths, andagainthecoherencetimeisknowntobegreaterthanthepulseduration[12].However,the opticalfrequencysynthesisapplicationsenabledbyoctave-spanningSCrequirepulse-to-pulse phasecoherenceovertimesmuchlongerthantherepetitionperiodofthepulsetraintoensure that the mode-locked pulse train gives rise to a stable optical frequency comb. Our work is thefirsttoinvestigatethetemporalcoherenceofslicedoctave-spanningsupercontinuumover timescalesgreaterthanthepulseduration. Herewedescribethegenerationofmode-lockedpicosecondpulsesfromanoctave-spanning supercontinuum (SC) source pumped at 1550 nm. The 1110 nm wavelength is of particular interestforourexperimentsonquantumcomputingwithtrappedYb+ions,butthearchitecture demonstrated here can be adapted to a wide variety of wavelengths in the 1000-2000 nm range of our SC source. The characteristics of our 1110 nm source are similar to those of a picosecondmode-lockedYbfiberlaserinallrespectsbutwavelength(see,e.g.,refs.[13,14]). Thepicosecondoutputpulsesarechirpedbutcanbecompressednearlytothetransformlimit, while the pulse energy of ∼100 pJ and the 40 MHz repetition rate are similar to those of a typicalmode-lockedfiberlaser.Toourknowledge,nosuchlaserhasbeenreportedat1110nm, showingthatourarchitecturecanexpandthewavelengthrangeofmode-lockedfibersources. Ourresultsindicatethatthe1110nmlightinheritsthecoherencepropertiesoftheSCsource. In the future, absolute frequency stabilization of our SC source will enable us to coherently synthesize picosecond pulses at desired wavelengths, representing a major step toward an arbitraryopticalfieldsynthesizer. 2. Octave-spanningsupercontinuum We generate supercontinuum (SC) in a highly nonlinear fiber Bragg grating pumped by femtosecondpulses at 1550nm (Fig. 1(a)). The 1550 nm signal originatesin a mode-locked fiber laser (Precision Photonics) with 40 MHz repetition rate and is amplified to ∼120 mW in an Er-doped fiber amplifier (IPG Photonics). The lengths of single-mode fiber (SMF) at the input and output of the power amplifier are optimized to give a minimum pulse duration of 90 fs at the amplifier output. Another 20 cm length of dispersion-shifted fiber (NZ-DSF) compressestheamplifiedpulsefurther,to55fs,thoughthesolitoncompressionleavesbehinda pedestalofseveralpsdurationcontainingabout50%ofthepulseenergy.Theamplifiedpulses areinjectedintoahighlynonlinearfiberBragggrating(HNLF-FBG)withbandgapnear1108 nm. A Bragg grating was written into the HNLF using a 248 nm excimer beam and a phase mask.The6mmUVbeamwasscanneduniformlyfor27mm.Theresultinggratinghadacore modereflectionbandwidthextendingfrom1104.4nmto1108.4nm.TheHNLFextendsanother 30 cm past the FBG region.Fig. 2 shows the SC spectrumin the 900- 1700nm wavelength range,asmeasuredwithanopticalspectrumanalyzer(OSA).WhiletheOSArangeislimited towavelengthsbelow1700nm,furthermeasurementswithanIRmonochromatorindicatethat theSCplateauextendsto>2000nm.SplicelossesandlinearlossintheFBG reducetheSC averagepowerto40mWattheHNLFoutput.TheSCpowerspectraldensityisenhancednear 1110nm,slightlytotheredoftheFBGbandgap[15].TheSCsourcemaintainshighspectral brightness(>10m W/nm)overnearlytheentire1000-2000wavelengthrange.Thisspectral brightness is sufficient for generation of mode-locked picosecond pulses at mW power lev- elsoversubstantialportionsoftheSCspectrum,asexemplifiedinthepresentworkat1110nm. aa)) 11111100 nnmm rreemmaaiinniinngg XXX cm XXX cm HNLF-FBG drop filter SC mode-locked laser SMF-28e NZ-DSF EDFA 1550 nm, 40 MHz bb)) fused- pump pump fiber pump WDM 10 m YDF WDM 10 m YDF filters WDM 10 m YDF CFBG pump pump pump ddiiooddee ddiiooddee ddiiooddee output Fig. 1. Schematic of the mode-locked 1110 nm source. Supercontinuum generation (a) providesaspectrallyslicedseedforreamplification(b). 10 dB]dB] HNLF-FBG y [y [ 0 enhancement sitsit nn dede -10 al al ctrctr ee -20 pp ss er er ww -30 oo pp e e ativativ -40 elel rr -50 900 1000 1100 1200 1300 1400 1500 1600 1700 wavelength [nm] Fig.2.Spectrumofsupercontinuumgeneratedbythe1550nmpumpshowingcoverageof the1000-1700nmwavelengthrange. 3. Spectralslicingandreamplification TheSC sourceisinitially spectrallysliced bycustomfused-fibercouplersto isolatethe1000 -1300nmband.ThispartoftheSCservesastheinputtoahome-builtytterbium-dopedfiber amplifier (YDFA) system (Fig. 1(b)) that preferentially amplifies input light near 1110 nm. While the gain peak of short lengths of ytterbium-dopedfiber is near 1030 nm, excited-state absorption at this wavelength is also relatively high, so that longer lengths of more highly doped fiber exhibit gain peaks at relatively longer wavelengths. Our YDFA stages use 10-20 meter lengths of fiber with absorption coefficient of 1200 dB/m at 980 nm and exhibit gain peaks in the 1080 - 1110 nm range. Each stage is backward-pumpedwith up to 400 mW of 976 nm diode laser light. The first YDFA stage amplifies a relatively broad SC band from 1060-1120nm.An opticalisolator separatesthe first two YDFA stages, minimizingparasitic lasing. Custom fused-fiber couplersfilter out wavelengthsbelow 1085 nm at the input to the second YDFA stage. A fiber circulator passes the second-stage output through to the third YDFAstage.Afterafirstpassthroughthisstage,theamplifiedSCencountersachirpedfiber Bragggrating(CFBG).ThisCFBG(L∼4mm,D l ∼1.1nm,R∼7.4dB)wasfabricated chirp using a computer controlled, scanning free space Sagnac interferometer configuration where the 244nm output of a frequency doubled Ar+ laser is split mostly into the two first order diffraction orders through a chirped phase mask (pitch 10678.5nm) designed for 1554nm (chirp ∼3nm/cm). By tilting the interferometermirrors, the translated chirped interferogram hasareducedpitchwhichisimagedontothecustommadegermanosilicateopticalfibre(cutoff wavelength<700nm)bytheSagnacinterferometer.ThefinalBraggwavelengthiscenteredat ∼1108.5nmafterannealing.TheCFBGreflectionbandwidthisapproximately1nm(FWHM) around 1108.5 nm, which serves to filter out the parasitically amplified wavelengths below 1105nm.ThelightreflectedfromtheCFBGpassesagainthroughthethirdYDFAstage,being furtheramplifiedontheway,andemergesattheoutputportofthecirculator.Thisnarrowband double-passingof the final YDFA stage amplifies the 1110nm signal by an additional4 dB, whilereducingtheamplifiedSCbackgroundby6dB,leadingtoanoverallimprovementof10 dBinspectralselectivityaround1110nm. Figure 3 shows the optical power spectra at the YDFA system’s input and output. While the input spectrum extends far outside the displayed limits, the wavelength range amplified by the YDFA is set by the 1 nm bandwidth of the CFBG. From the measured ∼ 200m W powercontainedinthe5nmwideSCenhancementpeak,weseethatthein-bandpowerinput to the YDFA is only 40m W. Total output powers of up to 5.5 mW are achieved, with a net amplificationof21dB. b.]b.] 1 arar0.9 sity [sity [0.8 nn ee0.7 dd 0.55 nm al al 0.6 x30 ectrectr0.5 FWHM pp er ser s00..44 ww0.3 oo pp e e 0.2 vv atiati0.1 elel rr 10080 1090 1100 1110 1120 1130 1140 wavelength [nm] Fig. 3. SC input (dotted line) and YDFA output (solid line) power spectral density near 1110 nm. The input spectrum is multiplied by a factor of approximately 30 for ease of comparison. 4. Pulsepropertiesandcoherence The1110nmpulsesareinitiallyhighlychirpedbutcanbecompressedtonearlythetransform limit. Measured at the output of the YDFA, the pulses have full-width at half-maximum (FWHM)durationof∼6ps.(Weassumesech2 pulseshapethroughout.)Weuseafree-space grating compressorto compensate the normalgroup-velocitydispersion (GVD) accumulated in the YDFA. Figure 4 shows an autocorrelation trace for optimal pulse compression. The correspondingpulse duration is 1.7±0.1 ps FWHM. We must be cautious in estimating the time-bandwidth product because of the asymmetric source spectrum (Fig. 3); the spectral FWHM is only 0.7 nm, yielding a time-bandwidth product smaller than the transform limit. Numericallypredictingthetransform-limitedpulsedurationforthemeasuredoutputspectrum, we find that the 1110 nm pulses are within a factor of 1.6 of the transform limit. No pulse pedestalisvisiblewithinthe50psscanrangeoftheautocorrelator,showingthatthepulsesare ofhightemporalquality. The1110nmpulsesare“mode-locked”onlyifthetemporalcoherenceoftheelectricfield ismaintainedfromonepulsetothenext.HerewerelyontheSCgenerationprocesstotransfer the coherenceof the 1550 nm pump pulses to the derived1110 nm pulses. Unless the pump pulse duration is short (<100 fs) and the soliton number in the HNLF is low (<15), the coherence of the SC process can easily be lost through fundamental mechanisms such as photonshotnoiseandspontaneousemission[16].Ourpumpsourcehasa55fspulseduration andanestimatedsolitonnumberof∼9,sohighSCcoherenceisexpected. Wemeasurethetemporalcoherencebetweensuccessive1110nmpulseswithanunbalanced Mach-Zehnder interferometer implemented in fiber. A piezoelectric stretcher in one arm of the interferometersweeps the path length differenceD L, and we observeinterferencefringes by photodetectionwhen D L is close to the distance L =c/n between successive pulses. rep rep 700 b.]b.] arar600 al [al [500 FWHM nn gg sisi 2.6 ps n n 400 oo atiati300 elel orrorr200 cc oo autaut100 0 -6 -4 -2 0 2 4 6 delay [ps] Fig.4.Autocorrelationtraceofthecompressed1110nmpulses.Points:data;line:sech2 fit.Theautocorrelationsignalisoffsetfromzeroforeaseofviewing. Thefringevisibilityislimitedbythedifferentialdispersionoftheinterferometerarms.Weuse 500cmofCorningSMF28efiber,withdispersionof−22ps/(nmkm)[17],toimplementthe distanceL .NumericallysimulatingthedispersiveeffectofthefiberonthemeasuredYDFA rep spectrum, we obtain a maximum fringe visibility of approximately 55%, so the measured visibilityof49±1%indicatesahighdegreeofinterpulsecoherence. The RF spectrum produced by photodetection of a mode-locked laser source contains a strong, narrow line at the laser repetition rate n , indicating low timing jitter between the rep envelopes of successive pulses. Figure 5 shows the RF spectrum of the 1110 nm source as measuredbyafastphotodiode.TheRFspectrumisindistinguishablefromthatoftheoriginal 1550nmoscillatoratourminimumresolutionbandwidthof1kHz. 5. Outlook We have generated mode-locked picosecond pulses at 1110 nm by spectral slicing and reamplification of an octave-spanning supercontinuum source. The resulting light source is similar to that of a standard mode-locked fiber oscillator, except that such oscillators have not,to ourknowledge,beendemonstratedatthiswavelength.Muchofthe complexityof our amplifier design arises from the low gain at our target wavelength of 1110 nm, exacerbated by the relatively low quality of fiber components at this unusual wavelength. Hence our experiment demonstrates the feasibility of all-fiber mode-locked ps pulse generation right across the ytterbium-doped fiber gain bandwidth of 1010 - 1150 nm. Pressure tuning of a suitablewavelength-selectingCFBGwouldenabledynamictuningofthepspulsewavelength over>100nm[18].AmplificationofaspectrallybroaderSCseedshouldpermitgenerationof femtosecondpulses,aslongasthenonlinearanddispersivepulsepropagationintheamplifier isproperlytakenintoaccount. -10 -20 m]m]-30 BB dd e [e [-40 otot atnatn-50 ee bb -60 -70 40.5 40.52 40.54 40.56 40.58 RF frequency [MHz] Fig.5.RFspectrumofthe1110nmsource.Resolutionbandwidth:1kHz. More broadly,fiber and semiconductoramplifiers can be used in place of our YDFA over mostofthe1000-2000nmwavelengthrange.Takingthe1110nmsourcebandwidthof∼1.5 nm as typical, we see that several hundred wavelength channels of mode-locked ps pulses can be simultaneouslyderivedfrom a single SC source, as shown in other work at lower SC bandwidth. As we have shown, each channel can be made to inherit its phase behavior from the SC source, passively phase-locking all channels together. Stabilizing the SC source in absolute frequency, combined with independent modulation of each channel, would allow phase-coherentsynthesisofhigh-resolutionopticalfieldwaveforms. 6. Acknowledgments This work was supported by the US Air Force Office of Scientific Research under contract FA4869-06-1-0045,byDIISRISLGrantCG130013,andbytheAustralianResearchCouncil (ARC) underDP0773354(Kielpinski),DP0770692(Canning),and Prof. Howard Wiseman’s FederationFellowshipFF0458313.WethankGoe¨ryGenty,O¨merIlday,andNathanNewbury forhelpfuldiscussions.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.