ebook img

Mining Human Mobility in Location-Based Social Networks PDF

117 Pages·2015·2.612 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mining Human Mobility in Location-Based Social Networks

Mining Human Mobility in Location-Based Social Networks Synthesis Lectures on Data Mining and Knowledge Discovery Editors JiaweiHan,UniversityofIllinoisatUrbana-Champaign LiseGetoor,UniversityofMaryland WeiWang,UniversityofNorthCarolina,ChapelHill JohannesGehrke,CornellUniversity RobertGrossman,UniversityofChicago SynthesisLecturesonDataMiningandKnowledgeDiscoveryiseditedbyJiaweiHan,Lise Getoor,WeiWang,JohannesGehrke,andRobertGrossman.eseriespublishes50-to150-page publicationsontopicspertainingtodatamining,webmining,textmining,andknowledgediscovery, includingtutorialsandcasestudies.Potentialtopicsinclude:dataminingalgorithms,innovativedata miningapplications,dataminingsystems,miningtext,webandsemi-structureddata,high performanceandparallel/distributeddatamining,dataminingstandards,dataminingand knowledgediscoveryframeworkandprocess,dataminingfoundations,miningdatastreamsand sensordata,miningmulti-mediadata,miningsocialnetworksandgraphdata,miningspatialand temporaldata,pre-processingandpost-processingindatamining,robustandscalablestatistical methods,security,privacy,andadversarialdatamining,visualdatamining,visualanalytics,anddata visualization. MiningHumanMobilityinLocation-BasedSocialNetworks HuijiGaoandHuanLiu 2015 MiningLatentEntityStructures ChiWangandJiaweiHan 2015 ProbabilisticApproachestoRecommendations NicolaBarbieri,GiuseppeManco,andEttoreRitacco 2014 OutlierDetectionforTemporalData ManishGupta,JingGao,CharuAggarwal,andJiaweiHan 2014 iii ProvenanceDatainSocialMedia GeoffreyBarbier,ZhuoFeng,PritamGundecha,andHuanLiu 2013 GraphMining:Laws,Tools,andCaseStudies D.ChakrabartiandC.Faloutsos 2012 MiningHeterogeneousInformationNetworks:PrinciplesandMethodologies YizhouSunandJiaweiHan 2012 PrivacyinSocialNetworks ElenaZheleva,EvimariaTerzi,andLiseGetoor 2012 CommunityDetectionandMininginSocialMedia LeiTangandHuanLiu 2010 EnsembleMethodsinDataMining:ImprovingAccuracyroughCombiningPredictions GiovanniSeniandJohnF.Elder 2010 ModelingandDataMininginBlogosphere NitinAgarwalandHuanLiu 2009 Copyright©2015byMorgan&Claypool Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedin anyformorbyanymeans—electronic,mechanical,photocopy,recording,oranyotherexceptforbriefquotations inprintedreviews,withoutthepriorpermissionofthepublisher. MiningHumanMobilityinLocation-BasedSocialNetworks HuijiGaoandHuanLiu www.morganclaypool.com ISBN:9781627054126 paperback ISBN:9781627054133 ebook DOI10.2200/S00630ED1V01Y201502DMK011 APublicationintheMorgan&ClaypoolPublishersseries SYNTHESISLECTURESONDATAMININGANDKNOWLEDGEDISCOVERY Lecture#11 SeriesEditors:JiaweiHan,UniversityofIllinoisatUrbana-Champaign LiseGetoor,UniversityofMaryland WeiWang,UniversityofNorthCarolina,ChapelHill JohannesGehrke,CornellUniversity RobertGrossman,UniversityofChicago SeriesISSN Print2151-0067 Electronic2151-0075 Mining Human Mobility in Location-Based Social Networks Huiji Gao LinkedIn Huan Liu ArizonaStateUniversity SYNTHESISLECTURESONDATAMININGANDKNOWLEDGE DISCOVERY#11 M &C Morgan &cLaypool publishers ABSTRACT Inrecentyears,therehasbeenarapidgrowthoflocation-basedsocialnetworkingservices,suchas FoursquareandFacebookPlaces,whichhaveattractedanincreasingnumberofusersandgreatly enriched their urban experience. Typical location-based social networking sites allow a user to “checkin”atareal-worldPOI(pointofinterest,e.g.,ahotel,restaurant,theater,etc.),leavetips toward the POI, and share the check-in with their online friends. e check-in action bridges thegapbetweenrealworldandonlinesocialnetworks,resultinginanewtypeofsocialnetworks, namely location-based social networks (LBSNs). Compared to traditional GPS data, location- basedsocialnetworksdatacontainsuniquepropertieswithabundantheterogeneousinformation torevealhumanmobility,i.e.,“whenandwhereauser(who)hasbeentoforwhat,”correspond- ingtoanunprecedentedopportunitytobetterunderstandhumanmobilityfromspatial,tempo- ral, social, and content aspects. e mining and understanding of human mobility can further lead to effective approaches to improve current location-based services from mobile marketing torecommendersystems,providingusersmoreconvenientlifeexperiencethanbefore.isbook takes a data mining perspective to offer an overview of studying human mobility in location- based social networks and illuminate a wide range of related computational tasks. It introduces basic concepts, elaborates associated challenges, reviews state-of-the-art algorithms with illus- trative examples and real-world LBSN datasets, and discusses effective evaluation methods in mininghumanmobility.Inparticular,weillustrateuniquecharacteristicsandresearchopportu- nities of LBSN data, present representative tasks of mining human mobility on location-based socialnetworks,includingcapturingusermobilitypatternstounderstandwhenandwhereauser commonlygoes(locationprediction),andexploitinguserpreferencesandlocationprofilestoin- vestigatewhereandwhenauserwantstoexplore(locationrecommendation),alongwithstudying auser’scheck-inactivityintermsofwhyausergoestoacertainlocation. KEYWORDS location-basedsocialnetworks,humanmobility,socialmedia,datamining,location recommendation,locationprediction vii is effort is dedicated to my parents and Ye. ank you for everything. -HG To my parents, wife, and sons. -HL

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.