WWrriigghhtt SSttaattee UUnniivveerrssiittyy CCOORREE SScchhoollaarr The Ohio Center of Excellence in Knowledge- Kno.e.sis Publications Enabled Computing (Kno.e.sis) 2015 MMiinniinngg BBeehhaavviioorr ooff CCiittiizzeenn SSeennssoorr CCoommmmuunniittiieess ttoo IImmpprroovvee CCooooppeerraattiioonn wwiitthh OOrrggaanniizzaattiioonnaall AAccttoorrss Hemant Purohit Wright State University - Main Campus, [email protected] Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis Part of the Bioinformatics Commons, Communication Technology and New Media Commons, Databases and Information Systems Commons, OS and Networks Commons, and the Science and Technology Studies Commons RReeppoossiittoorryy CCiittaattiioonn Purohit, H. (2015). Mining Behavior of Citizen Sensor Communities to Improve Cooperation with Organizational Actors. . https://corescholar.libraries.wright.edu/knoesis/1082 This Dissertation is brought to you for free and open access by the The Ohio Center of Excellence in Knowledge- Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis Publications by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. Mining Behavior of Citizen Sensor Communities to Improve Cooperation with Organizational Actors A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Hemant Purohit B.Tech., The LNM Institute of Information Technology, India, 2009 2015 Wright State University WrightStateUniversity GRADUATESCHOOL August31,2015 I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY SUPERVISION BY Hemant Purohit ENTITLED Mining Behavior of Citizen Sensor Communities to Improve Cooperation with Organizational Actors BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor ofPhilosophy. AmitP.Sheth,Ph.D. DissertationDirector ArthurA.Goshtasby,Ph.D. Director,ComputerScience&Engineering,Ph.D.Program RobertE.W.Fyffe,Ph.D. VicePresidentforResearch&DeanoftheGraduateSchool Committeeon FinalExamination GuozhuDong,Ph.D. PatrickMeier,Ph.D. SrinivasanParthasarathy,Ph.D. ValerieL.Shalin,Ph.D. KrishnaprasadThirunarayan,Ph.D. ©Copyrightby HemantPurohit 2015 ii ABSTRACT Purohit, Hemant. Ph.D., Department of Computer Science and Engineering, Wright State Univer- sity, 2015. MiningBehaviorofCitizenSensorCommunitiestoImproveCooperationwithOrgani- zationalActors. Web 2.0 (social media) provides a natural platform for dynamic emergence of citizen (as) sensor communities, where the citizens generate content for sharing information and en- gaging in discussions. Such a citizen sensor community (CSC) has stated or implied goals that are helpful in the work of formal organizations, such as an emergency management unit, for prioritizing their response needs. This research addresses questions related to design of a cooperative system of organizations and citizens in CSC. Prior research by so- cial scientists in a limited offline and online environment has provided a foundation for research on cooperative behavior challenges, including ‘articulation’ and ‘awareness’, but Web 2.0 supported CSC offers new challenges as well as opportunities. A CSC presents information overload for the organizational actors, especially in finding reliable informa- tionproviders(forawareness),andfindingactionableinformationfromthedatagenerated by citizens (for articulation). Also, we note three data level challenges–ambiguity in in- terpreting unconstrained natural language text, sparsity of user behaviors, and diversity of user demographics. Interdisciplinary research involving social and computer sciences is essentialtoaddressthesesocio-technicalissues. I present a novel web information-processing framework, called the Identify-Match- Engage(IME)framework. IMEallowsoperationalizingcomputationindesignproblemsof awareness and articulation of the cooperative system between citizens and organizations, by addressing data problems of group engagement modeling and intent mining. The IME framework includes: a.) Identification of cooperation-assistive intent (seeking-offering) fromshort,unstructuredmessagesusingaclassificationmodelwithdeclarative,socialand contrastpatternknowledge,b.) Facilitationofcoordinationmodelingusingbipartitematch- ing of complementary intent (seeking-offering), and c.) Identification of user groups to iii prioritize for engagement by defining a content-driven measure of group discussion diver- gence. The use of prior knowledge and interplay of features of users, content, and network structuresefficientlycapturescontextforcomputingcooperation-assistivebehavior(intent and engagement) from unstructured social data in the online socio-technical systems. Our evaluation of a use-case of the crisis response domain shows improvement in performance for both intent classification and group engagement prioritization. Real world applica- tionsofthisworkincludeuseoftheengagementinterfacetoolduringvariousrecentcrises including the 2014 Jammu and Kashmir floods, and intent classification as a service inte- gratedbythecrisismappingpioneerUshahidi’sCrisisNETprojectforbroaderimpact. iv List of Definitions • Formal Organization. An organization or institution that has a defined structure of communication,roles,andwork,e.g.,cityemergencymanagementunit(EMU). • Organizational actor. A member of the formal organization who understands and actsfortheorganizationaltasks,processesandworkflows,e.g.,firstresponders. • Citizen sensor. A user of social media platform, who participates in discussions on topics related to real world events by generating and sharing information. Roles of citizensensorsandorganizationalactorsareassumedmutuallyexclusive. • Citizen sensor community (CSC). A group of citizen sensors on social media who participateindiscussingvarioustopics. NopriorstructureisassumedinaCSC. • Goal-orientedCSC.AtypeofCSCwhereusershavevariousintentstoserveagoal, e.g., a voluntary group during crisis response, a group discussing insights on brand features,etc. • Crisis. An escalated emergency event that may be specific, unexpected, and non- routine event or a series of events. It creates high levels of uncertainty and threat to anorganization’shighprioritygoalsanditscapacity. • Behavior. A response to a stimulus environment, e.g., acts of offering help in a crisis. • Intent. An aim/plan for (future) action, e.g., wish to donate clothes for help in a crisis. • Engagement. A degree of involvement in discussions of a CSC, by participation in generatingandsharinginformation. • Coordination. Managingdependenciesbetweentasksinanorganizationalworkflow bydeliberatejointactions. e.g.,duringcrisis,ateamoforganizationalactorsofEMU collects information for resource needs from many sources, and processes collected informationtoachievethegoalofprioritizingresponses. • Cooperation. Avoluntaryjointactiontohelpotheractorsachievetheirgoal—acon- trasttocoordination,whichisdeliberateduetomanagingtheinterdependenttasksof a defined workflow. Cooperation facilitates organizational coordination, e.g., during crisis, when organizational actors of EMU with defined roles are coordinating (de- liberately) to collect information on resource needs, CSC members cooperate (vol- untarily)withthemtohelpminedataonurgentneeds. • Awareness for Cooperation. A challenge of facilitating shared knowledge among participatingactorsofcooperation,e.g.,what-where-when-whoduringcrisisresponse. v • Articulation for Cooperation. A challenge of managing task divisions and assem- bling various subtasks and sequences. In order to allow cooperation with citizens, organizational actors identify information needs specific to their task divisions, e.g., duringcrisis,seekingandofferingresourcesarekeyinformationneedsforclearlydi- vided tasks of resource scarcity and availability information collection, which helps improvedecisionmakingofprioritizationofresponse. vi Contents 1 Chapter1: Introduction 1 1.1 OnlineCitizenSensorCommunity(CSC)andGoal-orientation . . . . . . . 3 1.2 Challenges for Cooperation of Citizens and Organizations: Articulation andAwareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Identify-Match-Engage(IME)FrameworkforaddressingCooperationChal- lenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 IntentMiningandEngagementModelinginIMEFramework . . . . . . . . 8 1.5 ThesisQuestionsandContributions . . . . . . . . . . . . . . . . . . . . . 10 1.6 Use-caseofCrisisResponseDomainandApplications . . . . . . . . . . . 12 1.7 DissertationOrganization . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Chapter 2: Verifying Existence of Offline Human Behavior in Online Conver- sations 16 2.1 InsightsfromOfflineTheoriesofLinguisticCoordination . . . . . . . . . . 17 2.2 TypesofOnlineConversationsFacilitatedbySocialPlatforms . . . . . . . 18 2.2.1 AboutTwitterSocialMedium . . . . . . . . . . . . . . . . . . . . 18 2.2.2 TwitterConversations . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Offline Theory-guidedFeatures as Social Knowledgefor Classifying Con- versations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 ClassificationofConversationsinCSC:ExperimentsandResults . . . . . . 25 2.5 Discussion and Hypotheses: Reviewing the Usability of Offline Social KnowledgeforUnderstandingOnlineSocialData . . . . . . . . . . . . . . 35 3 Chapter 3: Identify function: Intent Classification to Meet Articulation of Or- ganizationalNeeds 39 3.1 AddressingtheChallengeofMultipleIntentasaClassificationProblem . . 40 3.2 RelatedWorkandtheChallengesofAmbiguityinInterpretation,andSpar- sityofIntent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3 Approach v1: Learning with a Bottom-Up Approach of Local Content- drivenFeatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4 Approachv2: LearningwithaTop-DownApproachofGlobalKnowledge- drivenFeatures: Declarative,Social,andContrastPatterns . . . . . . . . . 47 vii 3.5 Approachv3: LearningwithanIntegratedApproachofGlobalKnowledge- andLocalContent-drivenFeatures . . . . . . . . . . . . . . . . . . . . . . 54 3.6 ExperimentalDesignandImplementation . . . . . . . . . . . . . . . . . . 57 3.7 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4 Chapter 4: Engage function: User and Group Engagement Modeling for Ad- dressingAwareness 69 4.1 FindingPrioritizedGroupstoEngagebyModelingDiscussionDivergence . 70 4.2 Relatedwork: ChallengeofDiversityinGroupsofCSC . . . . . . . . . . . 72 4.3 QuantificationofGroupDiscussionDivergence . . . . . . . . . . . . . . . 75 4.4 GroupIdentificationviaCommunityDetectioninInteractionNetwork . . . 76 4.5 Group Representation Features: Quantification of Social Identity and Co- hesionTheories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.5.1 UserFeatures: Regional,ExpertiseandOnlineIdentities . . . . . . 77 4.5.2 Structural Features: Reciprocity Types in Friendship Network for ReflectingCohesion . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.6 ExperimentalDesignandImplementation . . . . . . . . . . . . . . . . . . 81 4.6.1 UserandStructuralFeatureCharacteristics . . . . . . . . . . . . . 87 4.6.2 PredictionofTrendforgroupdiscussiondivergence . . . . . . . . 91 4.7 ResultsandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5 Chapter5: RealWorldEngagements,Outcomes,andImpact 96 5.1 ApplicationsofIntentandEngagementModelingforaCooperativeSystem 96 5.2 RealworldCrises,andRoleofTechnology: LessonsLearned . . . . . . . . 99 5.3 InterfaceforOrganizationalActorstoCooperatewithCitizens . . . . . . . 100 5.4 IntentClassification-as-a-Service: UshahidiCrisisNETIntegration . . . . . 105 6 Chapter6: Discussion,Limitations,andFutureWork 106 6.1 LessonsonImprovements . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.1.1 OperationalizingComputationintheCooperativeSystemDesign . 107 6.1.2 DataRepresentationImprovementforIntentandEngagementModels108 6.1.3 FusingTop-downandBottom-UpApproachestoAddressAmbigu- ity,Sparsity,andDiversity . . . . . . . . . . . . . . . . . . . . . . 108 6.1.4 Importance of Social Behavioral Knowledge in Analyzing Online SocialData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2 AssumptionsandLimitations . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2.1 DomainDependence: ContextinCSCWApplications . . . . . . . 109 6.2.2 KnowledgeSources . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.2.3 IntentClasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.2.4 ConsiderationofTemporalDriftintheIntent . . . . . . . . . . . . 110 6.2.5 GroupBehaviorsinEngagementModeling . . . . . . . . . . . . . 111 6.2.6 Non-TwitterSocialData . . . . . . . . . . . . . . . . . . . . . . . 111 6.2.7 InterplayofOfflineandOnlineEnvironments . . . . . . . . . . . . 111 6.2.8 CorrelationbutnotCausalityforAction . . . . . . . . . . . . . . . 111 6.3 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 viii
Description: