ebook img

Mindlin Plate Theory and Abaqus UEL Implementation PDF

97 Pages·2017·4.1 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mindlin Plate Theory and Abaqus UEL Implementation

NikhilPadhye,SubodhKalia ImplementationofMindlinplateelement Mindlin Plate Theory and Abaqus UEL Implementation Page1of97 NikhilPadhye [email protected] SubodhKalia [email protected] 2 NikhilPadhye,SubodhKalia ImplementationofMindlinplateelement Contents 1 MindlinPlateTheory 7 1.1 Stressandstraincomponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Shapefunctionsandisoparametricelementformulation . . . . . . . . . . . . . 13 1.3 ComputationofJacobian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Calculationofstressandstrainatintegrationpoints . . . . . . . . . . . . . . . . 18 1.5 Principleofvirtualworkandderivationofelementstiffnessmatrix . . . . . . . 24 2 SampleHandCalculations 29 2.1 BendingStiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2 ShearStiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 SomeConsequencesofMindlinPlateTheory 37 4 ABAQUSUELImplementation 40 4.1 UELinputvariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 UELoutputvariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3 PseudocodefortheUELsubroutine . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5 BenchmarkingofUELImplementationforMindlinPlateElement 50 5.1 Singleelementtest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2 Testingmultipleelements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6 Acknowledgments 59 Page3of97 NikhilPadhye,SubodhKalia ImplementationofMindlinplateelement List of Figures 1 W,Landt representthewidth,lengthandthicknessoftheplate,respectively. 7 2 Rotation of a material line (normal to the neutral plane in the undeformed configuration),aboutY-axisinanti-clockwisedirectionwhenviewedfromthe positiveY-axis,anddenotedbyθ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 y 3 Isoparametricformulationfor4-nodedelementusing2x2quadintegration. . . 14 4 Four-nodedelementwithintegrationpointsinisoparametricformulation.. . . 30 5 UELsubroutineheaderfromAbaqus2016documentation,AbaqusUserSub- routinesReferenceGuide,Section1.1.28. . . . . . . . . . . . . . . . . . . . . . . . 40 6 Input-OutputblockdiagramfortheUELsubroutine. . . . . . . . . . . . . . . . . 41 7 Boundaryconditionsforasingleelementtest. . . . . . . . . . . . . . . . . . . . . 50 8 ReactionforcesinZ-directionwithAbaqusS4element. . . . . . . . . . . . . . . 51 9 ReactionmomentsinX-directionwithAbaqusS4element. . . . . . . . . . . . . 52 10 ReactionmomentsinY-directionwithAbaqusS4element. . . . . . . . . . . . . 52 11 PlotsforreactionforcesinZ-directionatthenodeswithrespecttonodaldis- placement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 12 PlotsforreactionmomentsinX-directionatthenodeswithrespecttonodal displacements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 13 Plots of reaction moments in Y-direction at the nodes with respect to nodal displacements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 14 PlatedeflectionfromMatlabcode. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 15 PlatedeflectionfromAbaqusS4elementanalysiswithascalefactorof106. . . 57 Page4of97 NikhilPadhye,SubodhKalia ImplementationofMindlinplateelement 16 PlatedeflectionfromUELwithascalefactorof106.. . . . . . . . . . . . . . . . . 58 17 Comparisonofdeflectionsforalaterallyloadedplateclampedattheedges. . . 58 Page5of97 NikhilPadhye,SubodhKalia ImplementationofMindlinplateelement ABSTRACT Inthisreport,wepresentamodelforplatebendingbasedontheMindlinplatetheoryfor smallelasticdeformations. Therelatedfieldandconstitutiveequations,andfiniteelement discretization (FEM) at an element level are also presented. The implementation of the Mindlin plate element is carried out for the UEL module of ABAQUS. The overall goal of thistechnicalreportistofacilitatetheunderstandingandimplementationoffiniteelement discretizationfortheUELmoduleofAbaqus,sothatuserscandefinetheirownelements.The overallproceduredescribedinthistechnicalreportisexpectedtoaidtheimplementation ofcustomdefineduserelementsforABAQUS,atopicthatiscurrentlynotdiscussedwell intheopinionoftheauthors. Forexample,otherthanofficialAbaqusdocumentation[1], only one comprehensive documentation for UEL in Abaqus is available online [9]. The currentdemonstrationiscarriedoutforsmalldeformations,forthesakeofsimplicity,and applicationsinvolvingotherplate/shelltheories(alongwithlargedeformationorrotation effects)willbedoneinthesubsequentreportsandpublications1. Althoughbenchmarking onsimpletestproblemsisperformedinthisstudy,detailedanalysesontheperformanceof currentplateformulationsuchaspatchtestperformance,shearlockingissues,etc. arenot discussed. Readerisreferredto[3],[7],[4],[2]and[6]fordetaileddiscussionsonthesetopics, includingmoresophisticatedfiniteelementmethods. 1Thereadersareencouragedtocontacttheauthorsincasetheyneedanyfurtherclarification.Useofthis documentoranycontent/codepresentedhereforanycommercialpurposesisstrictlyprohibited.Readersare welcometocitethisreportifitisfoundusefultotheminanyway. Page6of97 NikhilPadhye,SubodhKalia ImplementationofMindlinplateelement 1 MINDLIN PLATE THEORY Top surface W z L t y Mid surface x Figure1:W,Landt representthewidth,lengthandthicknessoftheplate,respectively. A plate is commonly identified as a thin flat structure as shown in Figure 1. In order to qualify as a plate, we require that the thickness (t) of the structure is small compared toitslength(L)andwidth(W),i.e. t <<L,W. Thisassumptionsimplifiestheunderlying governingequilibriumequationsandalsoallowsforseveralsimplificationsonthekinematics ofdeformationduetothe“thin"natureofthestructureathand. TheMindlinplatetheory canaccountforhomogeneousthroughthicknesssheardeformations(asopposedtoanother elementarytheoryofKirchhoff-Loveplates). Thetwokeyfeaturesofthistheoryare: (a)weassumebyconstructionthatσ =0,and z (b)sincethisisafirstordersheardeformationtheory;therefore,allowingσ andσ tobe xz yz non-zero. Weestimateσ ,σ fromγ ,γ whichthemselvesaretakentobenon-zeroand xz yz xz yz constantthroughthethicknessoftheplate. Membraneeffects(i.e. inplanestretchingofthe platemid-surface)arenotincludedinthistheory. Someotherconsequencesofsuchad-hoc Page7of97 NikhilPadhye,SubodhKalia ImplementationofMindlinplateelement assumptionsmadeinthistheoryarediscussedlaterinSection3. 1.1 Stressandstraincomponents ThedeformationintheMindlinplatecanbecharacterizedbythedisplacementofthemid- surface of the plate in the Z-direction (denoted by w), and rotation of the normal to the mid-surface(denotedbyθ andθ )aboutX-axisandY-axis,respectively. Thuswerequire x y threedegreesoffreedomw,θ ,θ atanypointonthemid-surfaceoftheplatetodescribethe x y completedeformation. LetusconsideramateriallineL L ,acrossthicknessoftheplate,perpendiculartothe 1 2 neutral plane in the undeformed configuration as shown in Figure 2. Upon deformation we assume that points on the material line L L still remain on a straight line l l in the 1 2 1 2 deformedconfiguration.ThemateriallineL L isrotatedbyanangleθ intheanti-clockwise 1 2 y directionwithrespecttotheY-axis. Forsmalldeformations,thedisplacementofanymaterial pointlyingonthelineL L ,relativetothepoint‘O’onthemid-surface,intheX-direction, 1 2 canbeapproximatedas2: u =zθ , (1) x y TheextensionalstrainintheX-directionisgivenas: (cid:178) = ∂ux =z∂θy . (2) x ∂x ∂x 2Wehaveassumednomembraneactionontheplate,i.e.,noin-planestrainsonthemid-surfaceofthe plate,thereforethemid-surfacedisplacementdoesnotvaryspatially,nordoesitplaysanyroleinstrainsacross thicknessasitshallmerelyenterasaconstantsumtou inequation 2. x Page8of97 NikhilPadhye,SubodhKalia ImplementationofMindlinplateelement In the above equation, z indicates the coordinate of a material point along Z-axis in theundeformedconfiguration,andforthesakeofclaritywerepeatthatθ ismeasuredin y anti-clockwisedirectionaboutY-axiswhenobservingfrompositivedirectiontothenegative direction. Itisworthhighlightingthatarathertacitassumptionhasbeenmadeinthisformulation (while locating a material point along the thickness direction) - regarding no change in thickness(implying(cid:178) =0),whichseemsinconsistentwiththepriorassumptionofσ =0. In z z opinionoftheauthors,itisquiteimportanttounderstandthelimitationsofsuchclassical plate/shelltheories(evenwiththeirmoreelegantextensionsasmadeintheliterature),since theycanleadtoratherspuriouspredictionsinscenarioswheretheunderlyingassumptions arequiteanoverreach. Followingasimilarprocedureonecanestimateu =−zθ . Pleasenotetheminussignin y x theestimationofu ,whichwasnotpresentinthecaseofu . Thus,(cid:178) isgivenas y x y ∂u ∂θ (cid:178) = y =−z x (3) y ∂y ∂y andaccordinglytheshearstrainsintheXY-planearegivenas (cid:183) ∂θ ∂θ (cid:184) γ =z − x + y . (4) xy ∂x ∂y Theshearstrainsacrossthethickness(γ andγ )canbecalculatedas xz yz ∂u ∂u γ = x + z , (5) xz ∂z ∂x Page9of97 NikhilPadhye,SubodhKalia ImplementationofMindlinplateelement N θ y L 1 ‘O’ L 2 z Top surface N z L 1 y u = z θ x y ‘O’ x L 2 Center line Bottom surface Figure2:Rotationofamaterialline(normaltotheneutralplaneintheundeformedconfiguration), aboutY-axisinanti-clockwisedirectionwhenviewedfromthepositiveY-axis,anddenotedbyθ . y Page10of97

Description:
Nikhil Padhye, Subodh Kalia. Implementation of Mindlin plate element. Mindlin Plate Theory and Abaqus UEL. Implementation. Page 1 of 97
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.