ebook img

Microwave Electronics PDF

2018·14.9 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Microwave Electronics

Springer Series in Advanced Microelectronics 61 Andrey D. Grigoriev Vyacheslav A. Ivanov Sergey I. Molokovsky Microwave Electronics Edited by Professor A. D. Grigoriev Springer Series in Advanced Microelectronics Volume 61 Series editors Kukjin Chun, Seoul, Korea, Republic of (South Korea) Kiyoo Itoh, Tokyo, Japan Thomas H. Lee, Stanford, CA, USA Rino Micheloni, Vimercate (MB), Italy Takayasu Sakurai, Tokyo, Japan Willy M. C. Sansen, Leuven, Belgium Doris Schmitt-Landsiedel, München, Germany TheSpringerSeriesinAdvancedMicroelectronicsprovidessystematicinformation on all the topics relevant for the design, processing, and manufacturing of microelectronic devices. The books, each prepared by leading researchers or engineers in their fields, cover the basic and advanced aspects of topics such as wafer processing, materials, device design, device technologies, circuit design, VLSI implementation, and subsystem technology. The series forms a bridge between physics and engineering and the volumes will appeal to practicing engineers as well as research scientists. More information about this series at http://www.springer.com/series/4076 Andrey D. Grigoriev Vyacheslav A. Ivanov • Sergey I. Molokovsky Microwave Electronics Edited by Professor A. D. Grigoriev 123 Andrey D.Grigoriev Sergey I.Molokovsky(deceased) Saint-Petersburg Electrotechnical Saint-Petersburg Electrotechnical University “LETI” University “LETI” Saint-Petersburg Saint-Petersburg Russia Russia Vyacheslav A.Ivanov Saint-Petersburg Electrotechnical University “LETI” Saint-Petersburg Russia ISSN 1437-0387 ISSN 2197-6643 (electronic) SpringerSeries inAdvancedMicroelectronics ISBN978-3-319-68890-9 ISBN978-3-319-68891-6 (eBook) https://doi.org/10.1007/978-3-319-68891-6 LibraryofCongressControlNumber:2017957671 CopyrightfortheEnglishversioniswiththeauthors. ©SpringerInternationalPublishingAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Nature is simple in its laws, but immeasurably rich and diverse in their applications! G. W. Leibniz Preface Microwaveelectronicsiscurrentlyalargeandrapidlydevelopingbranchofscience and technology, which has a huge impact on the country’s economy and defense capability. Most telecommunication systems, radio astronomy, accelerative tech- niques,thermonuclearmachines,technologyandmedicine,andpracticallyalltypes of weapons use microwave electronics technology to some extent. These achievements are mostly due to the use of new interaction mechanisms of charged particle fluxes with electromagnetic fields, use of new materials, and new manu- facturing technologies of microwave electronics devices and systems. Thephysicallawsandphenomenausedinmicrowaveelectronicdevices,andthe operating principles of these devices, along with their design, characteristics and parametersformthesubjectofthe“MicrowaveElectronics”discipline.Theselaws, phenomena and devices are studied more deeply in the masters programs of the corresponding field. Unfortunately, the textbooks and manuals on this discipline existing at the time ofpreparationofthismanuscriptwereeitherpublishedalongtimeagoandareout of date, or do not cover all the discipline’s content. In particular, there are no modern manuals considering the processes taking place in a vacuum and in semiconductor microwave devices from the unified position. The proposed textbook describes in reasonable detail the main interaction mechanisms of the microwave electromagnetic field with charged particles in a vacuum and in a solid. Much attention is paid to the peculiarities of these mech- anismsusingvacuumandsolid-statemicrowaveelectronicdevices.Thistheoretical partissupplementedbyadescriptionofthedesignofthedevices,theirparameters and characteristics. The authors hope that the proposed textbook will assist students studying microwave electronics and related areas. The book will also be useful to postgraduates and specialists engaged in the development and application of microwave electronics products. The textbook is based on the lecture course taught by the authors to bachelors and masters in St. Petersburg State Electrotechnical University “LETI”. vii viii Preface TheauthorsexpressalsotheirgratitudetoV.B.Yancevichforvaluableadvices andassistanceinpreparingthebookforpublication.Theauthorsarealsosincerely grateful to V. B. Yankevich, the Head of the LETI Radio-technical Electronics Department, for valuable advice and invaluable assistance in preparing the manu- script for publication. TheIntroduction,Chapters1,3,5...8,Chapter10andAppendixCwaswrittenby A. D. Grigoriev, Chapter 12... 14 and Appendix A was written by V. A. Ivanov, Chapters 2, 4 and 11 was written together by A. D. Grigoriev and V. A. Ivanov, Chapter 9 and Appenix B was written together by A. D. Grigoriev and S. I. Molokiovsky. Saint-Petersburg, Russia Vyacheslav A. Ivanov Contents Part I Microwave Electronics Physical Foundations 1 Main Stages of Microwave Electronics Development . . . . . . . . . . . 3 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Microwave Vacuum Electronics. . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Semiconductor Microwave Electronics. . . . . . . . . . . . . . . . . . . 7 1.4 Comparative Characteristics of Vacuum and Semiconductor Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Prospects for the Development of Microwave Electronics . . . . . 9 2 Interaction of Charged Particles with an Alternating Electromagnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Radiation of Individual and Collective Charged Particles . . . . . 11 2.2 Macroscopic Equations of Microwave Electronics. . . . . . . . . . . 16 2.3 Motion Equations of Charged Particles . . . . . . . . . . . . . . . . . . 18 2.3.1 Motion of a Single Particle in Vacuum . . . . . . . . . . . 18 2.3.2 The Particles Ensemble Motion in Vacuum . . . . . . . . 20 2.3.3 The Particles Ensemble Motion in Solid . . . . . . . . . . 22 2.4 Material Parameters and Relaxation Processes . . . . . . . . . . . . . 24 2.5 Noises in Microwave Devices . . . . . . . . . . . . . . . . . . . . . . . . . 32 Advancement Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3 Oscillations and Waves in Charged Particle Beams . . . . . . . . . . . . 43 3.1 Space Charge Oscillations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 Space Charge Waves in Electron Beams . . . . . . . . . . . . . . . . . 45 3.3 Charge Carrier Waves in Semiconductors. . . . . . . . . . . . . . . . . 49 Advancement Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ix x Contents 4 Interaction of Charged Particle Fluxes with a High-Frequency Electromagnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.1 Interaction Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2 Interaction with Quasi-Static Field, the Induced Current. The Shokley-Ramo Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3 Current in the Flat Interelectrode Gap and Its External Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.4 Electric Gap Field Effect on the Motion of Charged Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.5 Energy Exchange Between Electrons and the Gap Field . . . . . . 66 4.6 Interaction of Charged Particles with a Travelling Wave Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Advancement Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5 A Microwave Device as a Circuit Element . . . . . . . . . . . . . . . . . . . 73 5.1 Microwave Devices Requirements . . . . . . . . . . . . . . . . . . . . . . 73 5.2 Classification of Microwave Devices . . . . . . . . . . . . . . . . . . . . 74 5.3 The Basic Functional Components of Electron Devices. . . . . . . 76 5.4 Parameters and Characteristics of Microwave Devices. . . . . . . . 78 5.4.1 Device Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.4.2 Characteristics of Microwave Devices . . . . . . . . . . . . 79 Advancement Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Part II Microwave Vacuum Electron Devices 6 Devices with Quasi-static Control . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.1 General Characteristics and Parameters of Devices with Quasi-static Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.2 The Monotron and Diode Admittance . . . . . . . . . . . . . . . . . . . 90 6.3 Operating Modes of Electron Tubes. . . . . . . . . . . . . . . . . . . . . 92 6.4 Amplifier Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.5 The Influence of Cathode Contact Inductance. . . . . . . . . . . . . . 96 6.6 The Influence of Space Charge and Displacement Current in the Cathode-Grid Space . . . . . . . . . . . . . . . . . . . . . 98 6.7 Motion of Electrons in the Grid-Anode Space . . . . . . . . . . . . . 100 6.8 Modern Medium and High Power Tetrodes . . . . . . . . . . . . . . . 101 6.9 Microwave Vacuum Microelectronics Devices . . . . . . . . . . . . . 104 Advancement Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7 O-Type Microwave Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.1 General Characteristics of O-Type Devices. . . . . . . . . . . . . . . . 109 7.2 Klystrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.2.1 The Structure and Operating Principle of the Double-Cavity Transit-Time Klystron . . . . . . . 110 7.2.2 Velocity Modulation in the Interaction Gap . . . . . . . . 111 7.2.3 The Kinematic Theory of Bunching. . . . . . . . . . . . . . 113 7.2.4 Effect of Longitudinal Electron Repulsion . . . . . . . . . 118

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.