ebook img

Micromachines as Tools for Nanotechnology PDF

217 Pages·2003·6.705 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Micromachines as Tools for Nanotechnology

microtechnology and mems Springer-Verlag Berlin Heidelberg GmbH microtechnology and mems SeriesEditor: H.Baltes D.Liepmann TheseriesMicrotechnologyandMEMScomprisestextbooks,monographs,and state-of-the-artreportsintheveryactivefieldofmicrosystemsandmicrotechno- logy. Written by leading physicists and engineers, the books describe the basic science,devicedesign,andapplications.Theywillappealtoresearchers,engineers, andadvancedstudents. MechanicalMicrosensors ByM.ElwenspoekandR.Wiegerink CMOSCantileverSensorSystems AtomicForceMicroscopyandGasSensingApplications ByD.Lange,O.Brand,andH.Baltes MicromachinesasToolsforNanotechnology Editor:H.Fujita H. Fujita (Ed.) Micromachines as Tools for Nanotechnology With183Figures 1 3 Professor I [ioryuki Pujita Th(' Univ('rsityofTokyo [nstitut(' of [ndustrial Sci('nc(' 4-6-1 Komaba, Meguro-ku Tokyo 153-8505, lapan E-mail: [email protected] Scrics Edilors: Professor Dr, I r. l3altcs ETH Ziirich, Phy~ical Electronics Laboralory ETI 1 [lo('Jlgg('rb('rg, 1[ 1'T-l [6, 1:\093 llirich, Switz('rland Profcssor Dr. Dorian Licpmann Univ('rsity of California, D('partment of Bioengineering 466 Evan~ Hali, #1762, Berkeley, CA 94720-1762, USA ISSN 1615-8}26 ISBN 978-3-642-62465-0 l.ibrary ofCongn'S~ Calaloging_in_Publicationllata Fujila, Hiroyuki. 1952- Mircromachin<?s as lools for nanolechno[og)' III. !'ujita. p. Cm. __ (Mircol~..:bnology and MEMS) Inc!udcs bibliographical referen"'. arul index. ISBN 978-3-642-62465-0 ISBN 978-3-642-55503-9 (eBook) DOI 10.1007/978-3-642-55503-9 1. NanOI~..:hnology. 2. Mircoek..:tromedanical systcms. 1. Title. II. Seri~'S. TL74.7.1'852003 620'.5-·dClL 200J045497 This work is subject 10 copyright. Al! rights are rcscrw{\, whethcr the whole or pari of the material is concerne<I, specifical!y Lhe righls of trdnslation. reprinting, reusc of iIlllstrdtions, recilalion. broadcasting, reproduction On microfilm or in any Olher way, amI storage in dala bank$. Duplicalion of thi$ publieation or or parts thCf<~)f is permill~-d only under the provisions the German Copyrighll ... w of s.cpk~nbcr 9, L965, in ils CUrTenl ,""rsion, and permission for usc must always bc oolaincd frOI11 Springer_Verlag. Violations arc !iable for prosecution under Ihe German Copyright Law. hllp:llwww .• p.;nger.de @Springer-VerlagBerlinHcidelberg2OO3 OriGinall)' pul:>lishc<.ll:>y Sprinl\c,-Vc'r!ay, Ikrli" I-kidclb<-'Jl.\ New Yorl< OI 2003 S<>ftco"cr "'P';'" of the hanlco""" ISI rolhOll ~oo 3 Thc use of gene ..... 1 descripti\'e names, rcgistcrcd names, t ..... dcm~rks, cle. in this publication Joes not imply, even in Ihe absence ofa specific slatemmt, that sllch naJUcs arc excmpt from the relevant proteetive laws and regulalions and Iherefore frec for general usc. Typ<.'SCuing: Camcra_re~dy copyby Ihe <"<Iilor and 1.J;.'1i.:X GbR I.cip1.ig using ~ Springer t'li.:Xm~cro I'roduction: LE-'Ij;X rcJouck, S-chmidt & V()cklcr GbR, Leipzig Cover concept: eSllIdio Calamar Sicinen Cover produetion: design 6 produC/ion GmbH, HC1(!elberg I'rinlcd on acid.fn'C paper SPIN 110098'8 S7131,,'Yt-}43~1 Preface Nanotechnology is the key technology of the 21st century that promises to bring dramatic new developments in electronics, communication networks, biotechnology, medical science and environmental research. The technology is expected to play an essential part in the life of society in the future. Gov- ernments around the world fund and promote major projects for research in nanotechnology while intensive efforts are also made in the private sector. Nanotechnologydealswithmaterials,structures,anddeviceshavingsizes of the order of one to hundreds of nanometers. The basic idea lies in as- sembling atoms and molecules into complex arrangements that have novel functionality. Whilemothernaturecanbuildallthecomplexorgansofliving creaturesfromproteinandotherbiomolecules,weareunabletobuildawhole system from the bottom up. Also a precise understanding of the nanoscopic world is essential before we can make full use of nano phenomena. I believe that miniaturized devices and machines play a key role in bridging the gap between the nanoscopic world and our macroscopic world. This book describes some of the latest developments in micromachining technology based on semiconductor processes for integrated circuits and ap- plied to nanotechnology. The minimum size of transistors has been reduced to almost 100 nanometers thus it becomes possible to fabricate miniatur- ized tools having sizes ranging from 10 to 100 nanometers. These tools are suitable for measuring, observing, handling and controlling nanoscopic ob- jects, namely DNA molecules, proteins, and semiconductors quantum dots. Of course, this is just the beginning of such applications. I even envision hy- brid systems, combining both nanomaterials and micromachined devices, to be developed within the next five to ten years. I hope you share the excite- ment of observing a new field of research in creation. I would like to thank Dr. Claus E. Ascheron for his continuous encour- agement and Mr. Ryuji Yokokawa for his help in editing chapters. Tokyo, Japan Hiroyuki Fujita 22 April, 2003 Contents 1 Micromachining Tools for Nanosystems Hiroyuki Fujita ................................................. 1 1.1 Introduction ............................................... 1 1.2 Bottom–Up and Top–Down Approaches ....................... 2 1.3 Combining the Two Approaches to Nanosystems ............... 4 1.4 Micro- and Nanomachining .................................. 7 1.5 Examples of Micromachined Nanodevices...................... 9 1.5.1 Microprobe Arrays for Ultrahigh Density Data Storage .... 9 1.5.2 Multiple Nanoprobes .................................. 12 1.5.3 Microfluidic Devices Incorporating Biomaterial ........... 14 1.6 Organization of the Book.................................... 17 References ..................................................... 18 2 Microsystems for Single-Molecule Handling and Modification Masao Washizu................................................. 21 2.1 Stretch-and-Positioning of DNA.............................. 23 2.2 Molecular Surgery of DNA .................................. 26 2.2.1 Laser Surgery ........................................ 26 2.2.2 Mechanical Surgery with an AFM Tip................... 27 2.2.3 Molecular Surgery with an Enzyme-Labeled Probe ........ 30 2.2.4 Use of Local Temperature Rise ......................... 38 2.3 A Microfabricated Probe for Molecular Surgery ................ 40 2.4 Conclusion ................................................ 42 References ..................................................... 43 3 Manipulation of Single DNA Molecules Akira Mizuno .................................................. 45 3.1 Manipulation of Giant DNA Molecules ........................ 47 3.1.1 Characteristics of Globular DNA ....................... 48 3.1.2 Suppression of Fragmentation by Globular Transition ..... 49 3.1.3 Laser Trapping of Single DNA.......................... 53 3.2 Stretching a Giant DNA Molecule ............................ 57 3.2.1 Observation and Fixation of Single DNA ................ 57 VIII Contents 3.2.2 Stretching and Fixing DNA Via the Globule–Coil Transformation.................... 57 3.3 Mapping Stretched Single DNA Molecules ..................... 60 3.3.1 Hybridization with a Probe ............................ 60 3.3.2 Restriction Map ...................................... 63 3.4 Cutting Stretched DNA ..................................... 63 3.4.1 Localizing Enzyme Activity by Local Temperature Control.......................... 64 3.4.2 Cutting DNA by Controlling Ionic Concentration ......... 68 3.5 Recovery of DNA Fragments................................. 70 3.6 Microreactors for DNA Manipulation ......................... 72 3.6.1 Production of Microreactors in Oil ...................... 73 3.6.2 Manipulation and Fusion of Microreactors ............... 73 3.6.3 Indirect Manipulation of Globular DNA Molecules ........ 74 3.6.4 Chemical Reaction in the W/O Microreactor System ...... 75 3.6.5 PCR Amplification of DNA Fragments .................. 76 3.7 Conclusion ................................................ 78 References ..................................................... 78 4 Near-Field Optics in Biology Patrick Degenaar, Eiichi Tamiya .................................. 83 4.1 Breaking the Diffraction Barrier.............................. 85 4.2 SNOAM Probe Design ...................................... 87 4.3 SNOAM Configurations ..................................... 90 4.4 Feedback Mechanisms for SNOAM ........................... 92 4.5 SNOAM in Aqueous Environments ........................... 94 4.6 SNOAM System Design ..................................... 95 4.7 Calibration ................................................ 98 4.8 Fluorescence Imaging with SNOAM .......................... 99 4.9 SNOAM Imaging of Fluorescent Beads ........................ 101 4.10 Fluorescence Profiling....................................... 102 4.11 SNOAM Imaging of Chromosomes............................ 103 4.12 SNOAM Imaging of Recombinant Bacterial Cells Containing a Green Fluorescent Protein Gene.................. 105 4.13 Imaging of Neurons......................................... 108 4.14 Future Development of SNOAM.............................. 111 4.14.1Apertureless SNOAM ................................. 112 4.14.2Vibrational Spectroscopy .............................. 112 4.14.3Competition for SNOAM .............................. 113 4.15 Conclusion ................................................ 113 References ..................................................... 113 Contents IX 5 Atomic Force Microscopy for Imaging Living Organisms: From DNA to Cell Motion Tatsuo Ushiki .................................................. 121 5.1 Principles of Atomic Force Microscopy ........................ 121 5.2 Applications in Biology ..................................... 123 5.2.1 Deoxyribonucleic Acid (DNA) and Chromosomes ......... 123 5.2.2 Collagen Molecules and Collagen Fibrils ................. 124 5.2.3 Tissue Sections ....................................... 126 5.2.4 Living Cells and Their Movement....................... 126 5.3 Other SPM Applications in Biology........................... 128 5.4 Conclusion ................................................ 128 References ..................................................... 129 6 Expanding the Field of Application of Scanning Probe Microscopy Hideki Kawakatsu............................................... 131 6.1 Nanotribology ............................................. 132 6.1.1 An AFM with Two Optical Levers for Detecting the Trajectory of the Tip Apex............. 132 6.1.2 Mapping Lateral Tip Vibrations in Scanning Force Microscopy .......................... 133 6.1.3 Linear Scale Using a Crystal as Scale Reference........... 135 6.2 Control ................................................... 137 6.3 Fabrication ................................................ 139 6.3.1 Fabrication of Nanometric Oscillators for Scanning Force Microscopy ......................... 139 6.3.2 Fabrication of Nanometric Parallel Leaf Springs for Precise Linear Motion.............................. 142 6.3.3 Fabrication of Millions of Cantilevers on a Centimeter Square Chip........................... 142 6.3.4 Strength Measurement of the Nano-Oscillator ............ 144 6.4 Characterization ........................................... 147 6.5 Conclusion ................................................ 148 References ..................................................... 149 7 Micromachined Scanning Tunneling Microscopes and Nanoprobes Hiroyuki Fujita, Yasuo Wada, Dai Kobayashi, Gen Hashiguchi........ 153 7.1 Operating Principles and Basic Structure...................... 154 7.2 Micro-STM Design Considerations............................ 155 7.2.1 Basic Design of Electrostatic Actuators.................. 155 7.2.2 Vibration Frequency of the Micro-STM.................. 157 7.3 Surface Micromachining and Bulk Micromachining.............. 158 7.4 Micro-STM Fabrication Technology........................... 159 X Contents 7.4.1 Surface Micromachined STM Chip Fabrication Process .... 159 7.4.2 Stick-Free Release of the Micromachined Structure from the Substrate.................................... 161 7.4.3 Dry Bulk Micromachined STM Chip Fabrication Process .. 162 7.4.4 Fabrication Process for Single-Crystal Silicon Nanowire and Nanoprobes....... 168 7.4.5 Nanoprobes with Bulk Micromachined Actuators ......... 172 7.5 Characterization of the Fabricated Micro-STM ................. 175 7.5.1 Operation in Air...................................... 175 7.5.2 Operation in Vacuum ................................. 176 7.6 Possible Applications of Micromachine STM Technology......... 179 7.6.1 Micromachine STM for Sub-100 nm Lithography System .. 179 7.6.2 Application to High-Density Data Storage ............... 182 7.6.3 Experimental Tool for Understanding Basic Physics ....... 185 7.7 Conclusion ................................................ 188 References ..................................................... 189 8 Nanoscale Characterization of Nanostructures and Nanodevices by Scanning Probe Microscopy Takuji Takahashi ............................................... 191 8.1 Micromachining Technologies in SPM ......................... 191 8.2 Scanning Tunneling Microscopy and Spectroscopy for Semiconductors ......................................... 193 8.2.1 Topographic Characterization .......................... 194 8.2.2 Scanning Tunneling Spectroscopy (STS) ................. 194 8.2.3 STM Luminescence from Nanostructures ................ 198 8.2.4 Combination of STM/STS and Laser Illumination ........ 198 8.3 Atomic Force Microscopy (AFM) on Semiconductor Nanostructures ............................ 200 8.3.1 AFM with a Conductive Tip as a Current Probe.......... 201 8.3.2 Scanning Capacitance Microscopy (SCM) ................ 202 8.3.3 Electrostatic Force Detection........................... 203 8.3.4 Kelvin Probe Force Microscopy (KFM) .................. 204 8.4 Scanning Near-field Optical Microscopy (SNOM) ............... 205 8.5 Nanofabrication Processes Using STM/AFM................... 206 8.6 Concluding Remarks........................................ 209 References ..................................................... 209 List of Contributors Hiroyuki Fujita Tatsuo Ushiki Institute of Industrial Science, Department of Anatomy University of Tokyo and Histology, 4-6-1 Komaba, Meguro-ku, Faculty of Medicine, Tokyo 153-8505, Japan Niigata University [email protected] Ashahimachi-dori, Niigata 951-8510, Japan Masao Washizu [email protected] Department of Mechanical Engineering, Hideki Kawakatsu The University of Tokyo, Institute of Industrial Science, 7-3-1 Hongo, Bunkyo-ku, University of Tokyo Tokyo 113-8656, Japan 4-6-1 Komaba, Meguro-ku, School of Engineering, Tokyo 153-8505, Japan The University of Tokyo [email protected] [email protected] Akira Mizuno Yasuo Wada Department Waseda University, of Ecological Engineering, Wasedatsurumaki-cho, Shinjuku-ku, Toyohashi University of Technology Tokyo 162-0041, Japan Tempaku-cho, [email protected] Toyohashi 441-8580, Japan [email protected] Dai Kobayashi Institute of Industrial Science, Patrick Degenaar University of Tokyo Imperial College London 4-6-1 Komaba, Meguro-ku, Exhibition Road, Tokyo 153-8505, Japan London SW7 2AZ [email protected] [email protected] Eiichi Tamiya Gen Hashiguchi Japan Advanced Institute Kagawa University, of Science and Technology Takamatsu, 1-1 Asahidai, Tatsunokuchi, Kagawa 760-8526, Ishikawa 923-1292, Japan Japan [email protected] [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.