ebook img

Microfluidics and Bio-MEMS: Devices and Applications PDF

566 Pages·2020·27.035 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Microfluidics and Bio-MEMS: Devices and Applications

Microfuidics and Bio-MEMS Microfuidics and Bio-MEMS Devices and Applications edited by Tuhin S. Santra July17,2020 20:21 JSPBook-9inx6in 00-Tuhin-Santra-Prelims Published by Jenny Stanford Publishing Pte. Ltd. Level 34, Centennial Tower 3 Temasek Avenue Singapore 039190 Email: [email protected] Web: www.jennystanford.com British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Microfluidics and Bio-MEMS: Devices and Applications Copyright c 2021 Jenny Stanford Publishing Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN 978-981-4800-85-3 (Hardcover) ISBN 978-1-003-01493-5 (eBook) July17,2020 20:21 JSPBook-9inx6in 00-Tuhin-Santra-Prelims Contents Preface xv 1 Microfluidic Technologies for Cell Manipulation, Therapeutics, and Analysis 1 Amogh Kumar, Pallavi Shinde, Loganathan Mohan, Pallab Sinha Mahapatra, and Tuhin S. Santra 1.1 Introduction 2 1.2 Microfluidic Cell Capture Techniques 3 1.2.1 Microdroplet-Based Cell Trapping 4 1.2.2 Cell Trapping through Microarray Devices 9 1.2.3 Cell Trapping through Hydrodynamic Systems and Microvortices 11 1.2.4 Miscellaneous Techniques for Cell Trapping 13 1.3 Microfluidic Single-Cell Therapy and Analysis 17 1.3.1 Electroporation 17 1.3.2 Mechanoporation 21 1.3.3 Optoporation 22 1.4 Microfluidic Cell Diagnosis and Analysis 24 1.4.1 Cell Diagnosis 24 1.4.2 Cell Analysis 28 1.4.2.1 Droplet-based analytical techniques 28 1.4.2.2 Microfluidic devices for massively parallel cell analysis 32 1.4.2.3 Miscellaneous analysis employing microfluidic devices 35 1.5 Future Prospects 38 1.6 Conclusions 39 July17,2020 20:21 JSPBook-9inx6in 00-Tuhin-Santra-Prelims vi Contents 2 Optical Manipulation of Cells 49 Srabani Kar, Pallavi Shinde, Moeto Nagai, and Tuhin S. Santra 2.1 Introduction 50 2.2 Photodynamic and Electrokinetic Phenomena 51 2.2.1 Dielectrophoresis 51 2.2.2 AC Electro-osmosis 53 2.2.3 Electrothermal Effect 54 2.3 Optical Trapping 56 2.3.1 Working Principle 56 2.3.2 Configurations of Optical Traps 59 2.3.2.1 Single-beam optical trap 60 2.3.2.2 Dual-beam optical trap 60 2.3.2.3 Multiple optical traps 61 2.3.3 Applications of Optical Trapping in Biology 63 2.3.3.1 Cell manipulation 63 2.3.3.2 Studies of cell-to-cell interactions 65 2.3.3.3 Robot-tweezer manipulation system 66 2.3.3.4 Manipulation of subcellular organelles 66 2.4 Optoelectronic Tweezers 67 2.4.1 Device Design, Working Principle, and Developments 68 2.4.2 Applications of an Optoelectronic Tweezer 73 2.4.2.1 Cell lysis 73 2.4.2.2 Cell trapping, alignment, and patterning 74 2.4.2.3 Electroporation 74 2.4.2.4 Cell selection, identification, and separation 75 2.4.2.5 Cellular intrinsic properties 76 2.5 Rapid Electrokinetic Patterning 77 2.5.1 Setup and Working Principle 78 2.5.2 Biological Applications of REP 81 2.5.2.1 Patterning, translating, and sorting 81 2.6 Conclusions 83 July17,2020 20:21 JSPBook-9inx6in 00-Tuhin-Santra-Prelims Contents vii 3 Micro-Robots/Microswimmers for Biomedical Applications 95 Naveen Kumar Agrawal, Pallab Sinha Mahapatra, and Tuhin S. Santra 3.1 Introduction 96 3.2 Propulsion Mechanism 98 3.2.1 Magnetic Propulsion 99 3.2.2 Bubble Propulsion 105 3.2.3 Biological Propulsion 109 3.2.4 Self-Thermophoresis 113 3.3 Materials and Fabrication Techniques 114 3.3.1 Tubular Micro-Robots 115 3.3.1.1 Rolled-up technology 116 3.3.1.2 Template synthesis 118 3.3.2 Helical Micro-Robots 119 3.3.3 Flexible Tail Micro-Robots 122 3.3.4 Janus Micro-Robots 124 3.4 Biomedical Applications 125 3.4.1 Delivery 127 3.4.2 Surgery 130 3.4.3 Sensing and Diagnosis 132 3.5 Discussion and Future Scope 136 4 Microfluidics in Neuroscience 149 Pallavi Gupta, Nandhini Balasubramaniam, Kiran Kaladharan, Fan-Gang Tseng, Moeto Nagai, Hwan-You Chang, and Tuhin S. Santra 4.1 Introduction 150 4.2 Traditional Microfluidic Devices 152 4.3 Current Approaches 153 4.3.1 Compartmentalized Microfluidics 154 4.3.2 Single-Cell Monitoring 156 4.3.3 Co-culturing 162 4.3.3.1 Types of co-culture systems 162 4.3.3.2 Blood–brain barrier 163 4.3.3.3 Co-culturing of neural cells 164 4.3.4 Integrated Microfluidic/Microelectrode Array 166 4.3.5 Hydrogel Gradients 169 July17,2020 20:21 JSPBook-9inx6in 00-Tuhin-Santra-Prelims viii Contents 4.4 Applications 171 4.4.1 Neuron Differentiation and Polarity 172 4.4.1.1 Axon guidance 173 4.4.1.2 Patterned substrates 173 4.4.2 Biochemical Gradients 175 4.4.3 Electrophysiological Recordings 177 4.4.4 Dendritic Signaling and Synapse Formation 180 4.4.5 Developmental Study at Cell Population/Tissue/Organ-on-a-Chip (Brain-on-a-Chip) Level 184 4.4.6 Neurodegenerative Studies 188 4.5 Future Prospects 194 4.6 Summary 196 5 Vascularized Microfluidic Organ on a Chip and Its Applications 213 Qiyue Sun, Jianghua Pei, Qinyu Li, and Xiaolin Wang 5.1 Introduction 214 5.2 In vitro Vascularization Strategies 215 5.2.1 EC Lining–Based Methods 216 5.2.1.1 Microneedle-based removable method 217 5.2.1.2 Micropatterned planar hydrogel slab bonding method 218 5.2.1.3 Dissolvable material–based sacrificial micromolding method 218 5.2.1.4 EC lining inside a PDMS-based microfluidic channel 219 5.2.2 Vasculogenesis-and Angiogenesis-Based Methods 221 5.2.2.1 Vasculogenesis 221 5.2.2.2 Angiogenesis 222 5.2.2.3 Hybrid methods 223 5.3 Vascular-Inducing Factors 226 5.3.1 Biomechanical Factors 226 5.3.2 Extracellular (or Diffusible) Signaling Molecules 228 5.3.3 Cell Source and Cell–Cell Interaction 230 5.4 Selective Vascular Barrier 230 July17,2020 20:21 JSPBook-9inx6in 00-Tuhin-Santra-Prelims Contents ix 5.5 Application of Engineered Microvascular Networks to Cancer Biology 234 5.5.1 Tumor Angiogenesis 235 5.5.2 Tumor Intravasation 237 5.5.3 Tumor Extravasation 237 5.5.4 Tumor Microenvironment 238 5.5.5 Application of Vascularized Tumor on a Chip 239 5.5.5.1 Anticancer drug screening 239 5.5.5.2 Different tumor therapies 240 5.6 Conclusions and Future Perspectives 241 6 DNA Gene Microarray Biochip and Applications 255 Jian-Chiun Liou 6.1 Introduction 256 6.2 Combining Nanotechnology’s Biochips 259 6.3 Simulation of the Injection Performance of a Single-Channel Injection Chamber 260 6.4 Experiment and Results 266 6.5 Conclusions 271 7 Microneedles: Current Trends and Applications 275 Hima Manoj, Pallavi Gupta, Loganathan Mohan, Moeto Nagai, Syrpailyne Wankhar, and Tuhin S. Santra 7.1 Introduction 276 7.2 History of Microneedles 278 7.3 Mechanism of Drug Delivery via Microneedles 279 7.4 Types of Microneedles 283 7.4.1 Solid Microneedles 283 7.4.1.1 Solid, durable microneedles 283 7.4.1.2 Solid, degradable microneedles 283 7.4.2 Hollow Microneedles 284 7.4.3 Polymer Microneedles 287 7.4.3.1 Dissolving microneedles 288 7.4.3.2 Biodegradable polymers 291 7.4.3.3 Swellable polymers 293 7.5 Microneedle Material and Its Properties 295 7.5.1 Silicon 295 7.5.2 Metal 295

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.