ebook img

Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging: Volume 1 Materials Physics Materials ... Physical Design Reliability and Packaging PDF

1471 Pages·2007·36.82 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging: Volume 1 Materials Physics Materials ... Physical Design Reliability and Packaging

Micro-andOpto-ElectronicMaterialsandStructures: Physics,Mechanics,Design,Reliability,Packaging VolumeI MaterialsPhysics—MaterialsMechanics Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging Volume I Materials Physics—Materials Mechanics Editedby: E.Suhir UniversityofCalifornia,SantaCruz SantaCruz,California,USA UniversityofMaryland CollegePark,Maryland,USA Y.C.Lee UniversityofColorado Boulder,Colorado,USA C.P.Wong GeorgiaTech Atlanta,Georgia,USA E.Suhir UniversityofCalifornia,SantaCruz SantaCruz,California and UniversityofMaryland CollegePark,Maryland Y.C.Lee UniversityofColorado Boulder,Colorado C.P.Wong GeorgiaInstituteofTechnology Atlanta,Georgia Micro-andOpto-ElectronicMaterialsandStructures: Physics,Mechanics,Design,Reliability,Packaging LibraryofCongressControlNumber:2006922729 ISBN0-387-27974-1 e-ISBN0-387-32989-7 ISBN978-0-387-27974-9 Printedonacid-freepaper. ©2007SpringerScience+BusinessMedia,Inc. Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewrittenpermissionofthepublisher (SpringerScience+BusinessMedia,Inc.,233SpringStreet,NewYork,NY10013,USA),exceptforbriefexcerptsinconnection withreviewsorscholarlyanalysis.Useinconnectionwithanyformofinformationstorageandretrieval,electronicadaptation, computersoftware,orbysimilarordissimilarmethodologynowknoworhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarksandsimilarterms,evenifthearenotidentifiedassuch,is nottobetakenasanexpressionofopinionastowhetherornottheyaresubjecttoproprietaryrights. PrintedintheUnitedStatesofAmerica. 9 8 7 6 5 4 3 2 1 SPIN 11055464 springer.com Contents VolumeI ListofContributors xxvii Preface xxxi MaterialsPhysics Chapter1 PolymerMaterialsCharacterization,ModelingandApplication L.J.Ernst,K.M.B.Jansen,D.G.Yang,C.van’tHof,H.J.L.Bressers,J.H.J.Janssen andG.Q.Zhang 3 1.1. Introduction 3 1.2. PolymersinMicroelectronics 4 1.3. BasicsofVisco-ElasticModeling 6 1.3.1. Preliminary:StateDependentViscoelasticity 6 1.3.2. IncrementalRelationship 10 1.3.3. LinearStateDependentViscoelasticity 13 1.3.4. IsotropicMaterialBehavior 14 1.3.5. InterrelationsbetweenPropertyFunctions 15 1.3.6. ElasticApproximations 17 1.4. LinearVisco-ElasticModeling(FullyCuredPolymers) 18 1.4.1. Introduction 18 1.4.2. StaticTestingofRelaxationModuli 18 1.4.3. Time-TemperatureSuperpositionPrinciple 23 1.4.4. StaticTestingofCreepCompliances 24 1.4.5. DynamicTesting 27 1.5. ModelingofCuringPolymers 34 1.5.1. “PartlyStateDependent”Modeling(CuringPolymers) 35 1.5.2. “FullyStateDependent”Modeling(CuringPolymers) 49 1.6. ParameterizedPolymerModeling(PPM) 53 1.6.1. PPMHypotheses 54 1.6.2. ExperimentalCharacterizations 55 1.6.3. PPMModelinginVirtualPrototyping 62 Acknowledgments 62 References 62 vi CONTENTS Chapter2 Thermo-OpticEffectsinPolymerBraggGratings AvramBar-Cohen,BongtaeHanandKyoungJoonKim 65 2.1. Introduction 65 2.2. FundamentalsofBraggGratings 67 2.2.1. PhysicalDescriptions 67 2.2.2. BasicOpticalPrinciples 68 2.3. Thermo-OpticalModelingofPolymerFiberBraggGrating 70 2.3.1. HeatGenerationbyIntrinsicAbsorption 70 2.3.2. AnalyticalThermalModelofPFBG 78 2.3.3. FEAThermalModelofPFBG 80 2.3.4. Thermo-OpticalModelofPFBG 80 2.4. Thermo-OpticalBehaviorofPMMA-BasedPFBG 84 2.4.1. DescriptionofaPMMA-BasedPFBGandLightSources 85 2.4.2. PowerVariationAlongthePFBG 86 2.4.3. Thermo-OpticalBehaviorofthePFBG–LEDIllumination 87 2.4.4. Thermo-OpticalBehaviorofthePFBG–SMLDIllumination 92 2.4.5. Thermo-OpticalBehaviorofthePFBGAssociatedwithOtherLightSources 101 2.5. ConcludingRemarks 102 References 102 Appendix2.A:SolutionProceduretoObtaintheOpticalPowerAlongthePFBG 104 Appendix2.B:SolutionProceduretoDeterminetheTemperatureProfileAlongthe PFBG 106 2.B.1.SolutionProcedureoftheTemperatureProfileAlongthePFBGwiththeLED 106 2.B.2.SolutionProcedureoftheTemperatureProfileAlongthePFBGwiththeSMLD 106 Chapter3 PhotorefractiveMaterialsandDevicesforPassiveComponentsinWDMSystems ClaireGu,YisiLiu,YuanXu,J.J.Pan,FengqingZhou,LiangDongandHenryHe 111 3.1. Introduction 111 3.2. TunableFlat-ToppedFilter 114 3.2.1. PrincipleofOperation 114 3.2.2. DeviceSimulation 116 3.2.3. DesignforImplementation 117 3.3. WavelengthSelective2×2Switch 117 3.3.1. PrincipleofOperation 118 3.3.2. ExperimentalDemonstration 119 3.3.3. TheoreticalAnalysis 121 3.3.4. OptimizedSwitchDesign 123 3.3.5. Discussion 125 3.4. HighPerformanceDispersionCompensators 126 3.4.1. Multi-ChannelDispersion-SlopeCompensator 126 3.4.2. HighPrecisionFBGFabricationMethodandDispersionManagementFilters 129 3.5. Conclusions 133 References 133 CONTENTS vii Chapter4 Thin Films for Microelectronics and Photonics: Physics, Mechanics, Characteriza- tion,andReliability DavidT.ReadandAlexA.Volinsky 135 4.1. TerminologyandScope 135 4.1.1. ThinFilms 135 4.1.2. Motivation 136 4.1.3. ChapterOutline 136 4.2. ThinFilmStructuresandMaterials 137 4.2.1. Substrates 137 4.2.2. EpitaxialFilms 137 4.2.3. DielectricFilms 140 4.2.4. MetalFilms 141 4.2.5. OrganicandPolymerFilms 142 4.2.6. MEMSStructures 142 4.2.7. IntermediateLayers:Adhesion,Barrier,Buffer,andSeedLayers 142 4.3. Manufacturability/ReliabilityChallenges 143 4.3.1. FilmDepositionandStress 144 4.3.2. GrainStructureandTexture 147 4.3.3. Impurities 151 4.3.4. Dislocations 152 4.3.5. ElectromigrationandVoiding 153 4.3.6. StructuralConsiderations 155 4.3.7. NeedforMechanicalCharacterization 155 4.3.8. PropertiesofInterest 156 4.4. Methodsformechanicalcharacterizationofthinfilms 157 4.4.1. MicrotensileTesting 157 4.4.2. InstrumentedIndentation 159 4.4.3. OtherTechniques 164 4.4.4. AdhesionTests 165 4.5. MaterialsandProperties 172 4.5.1. GrainSizeandStructureSizeEffects 172 4.6. PropertiesofSpecificMaterials 173 4.7. FutureResearch 175 4.7.1. Techniques 175 4.7.2. Properties 175 4.7.3. LengthScale 175 References 176 Chapter5 CarbonNanotubeBasedInterconnectTechnology:OpportunitiesandChallenges AlanM.CassellandJunLi 181 5.1. Introduction:PhysicalCharacteristicsofCarbonNanotubes 181 5.1.1. Structural 181 5.1.2. Electrical 182 5.1.3. Mechanical 185 5.1.4. Thermal 186 5.2. CNTFabricationTechnologies 186 viii CONTENTS 5.2.1. ChemicalVaporDepositionofCarbonNanotubes 187 5.2.2. ProcessIntegrationandDevelopment 189 5.3. CarbonNanotubesasInterconnects 191 5.3.1. LimitationsoftheCurrentTechnology 191 5.3.2. Architecture,GeometryandPerformancePotentialUsingCarbonNanotubes 191 5.4. Design,ManufactureandReliability 194 5.4.1. MicrostructuralAttributesandEffectsonElectricalCharacteristics 194 5.4.2. InterfacialContactMaterials 196 5.4.3. End-contactedMetal–CNTJunction 198 5.4.4. ThermalStressCharacteristics 198 5.4.5. ReliabilityTest 199 5.5. Summary 200 References 200 Chapter6 VirtualThermo-MechanicalPrototypingofMicroelectronicsandMicrosystems A.Wymysłowski,G.Q.Zhang,W.D.vanDrielandL.J.Ernst 205 6.1. Introduction 205 6.2. PhysicalAspectsforNumericalSimulations 206 6.2.1. NumericalModeling 208 6.2.2. MaterialPropertiesandModels 211 6.2.3. Thermo-MechanicalRelatedFailures 215 6.2.4. DesigningforReliability 219 6.3. MathematicalAspectsofOptimization 225 6.3.1. DesignofExperiments 226 6.3.2. ResponseSurfaceModeling 236 6.3.3. AdvancedApproachtoVirtualPrototyping 242 6.3.4. DesigningforQuality 249 6.4. ApplicationCase 252 6.4.1. ProblemDescription 252 6.4.2. NumericalApproachtoQFNPackageDesign 253 6.5. ConclusionandChallenges 259 6.6. ListofAcronyms 264 Acknowledgments 264 References 264 MaterialsMechanics Chapter7 FiberOpticsStructuralMechanicsandNano-TechnologyBasedNewGenerationof FiberCoatings:ReviewandExtension E.Suhir 269 7.1. Introduction 269 7.2. FiberOpticsStructuralMechanics 270 7.2.1. Review 270 7.3. NewNano-ParticleMaterial(NPM)forMicro-andOpto-ElectronicApplications 273 7.3.1. NewNano-ParticleMaterial(NPM) 273 7.3.2. NPM-BasedOpticalSilicaFibers 274 CONTENTS ix 7.4. Conclusions 277 Acknowledgment 277 References 277 Chapter8 AreaArrayTechnologyforHighReliabilityApplications RezaGhaffarian 283 8.1. Introduction 283 8.2. AreaArrayPackages(AAPs) 284 8.2.1. AdvantagesofAreaArrayPackages 285 8.2.2. DisadvantagesofAreaArrays 285 8.2.3. AreaArrayTypes 286 8.3. ChipScalePackages(CSPs) 286 8.4. PlasticPackages 288 8.4.1. Background 288 8.4.2. PlasticAreaArrayPackages 288 8.4.3. PlasticPackageAssemblyReliability 289 8.4.4. ReliabilityDataforBGA,FlipChipBGA,andCSP 291 8.5. CeramicPackages 293 8.5.1. Background 293 8.5.2. CeramicPackageAssemblyReliability 294 8.5.3. LiteratureSurveyonCBGA/CCGAAssemblyReliability 295 8.5.4. CBGAThermalCycleTest 297 8.5.5. Comparisonof560I/OPBGAandCCGAassemblyreliability 302 8.5.6. DesignedExperimentforAssembly 305 8.6. Summary 309 8.7. ListofAcronymsandSymbols 310 Acknowledgments 311 References 311 Chapter9 Metallurgical Factors Behind the Reliability of High-Density Lead-Free Intercon- nections ToniT.Mattila,TomiT.LaurilaandJormaK.Kivilahti 313 9.1. Introduction 313 9.2. ApproachesandMethods 315 9.2.1. TheFourStepsofTheIterativeApproach 315 9.2.2. TheRoleofDifferentSimulationToolsinReliabilityEngineering 321 9.3. InterconnectionMicrostructuresandTheirEvolution 324 9.3.1. Solidification 324 9.3.2. SolidificationStructureandtheEffectofContactMetalizationDissolution 325 9.3.3. InterfacialReactionsProducts 330 9.3.4. DeformationStructures(DuetoSlipandTwinning) 333 9.3.5. Recovery,RecrystallizationandGrainGrowth 335 9.4. TwoCaseStudiesonReliabilityTesting 335 9.4.1. Case1:ReliabilityofLead-FreeCSPsinThermalcycling 337 9.4.2. Case2:ReliabilityofLead-FreeCSPsinDropTesting 341 9.5. Summary 347 x CONTENTS Acknowledgments 348 References 348 Chapter10 Metallurgy,ProcessingandReliabilityofLead-FreeSolderJointInterconnections JinLiang,NaderDariavachandDongkaiShangguan 351 10.1. Introduction 351 10.2. PhysicalMetallurgyofLead-FreeSolderAlloys 352 10.2.1. Tin-LeadSolders 352 10.2.2. Lead-FreeSolderAlloys 353 10.2.3. InterfacialReaction:WettingandSpreading 357 10.2.4. InterfacialIntermetallicFormationandGrowthatLiquid–SolidInterfaces 363 10.3. Lead-FreeSolderingProcessesandCompatibility 377 10.3.1. Lead-FreeSolderingMaterials 378 10.3.2. PCBSubstratesandMetalizationFinishes 380 10.3.3. Lead-FreeSolderingProcesses 381 10.3.4. ComponentsforLead-FreeSoldering 384 10.3.5. Design,EquipmentandCostConsiderations 387 10.4. ReliabilityofPb-FreeSolderInterconnects 388 10.4.1. ReliabilityandFailureDistributionofPb-FreeSolderJoints 388 10.4.2. EffectsofLoadingandThermalConditionsonReliabilityofSolderInterconnection 389 10.4.3. ReliabilityofPb-FreeSolderJointsinComparisontoSn-PbEutecticSolderJoints 395 10.5. GuidelinesforPb-freeSolderingandImprovementinReliability 406 References 406 Chapter11 FatigueLifeAssessmentforLead-FreeSolderJoints MasakiShiratoriandQiangYu 411 11.1. Introduction 411 11.2. TheIntermetallicCompoundFormedattheInterfaceoftheSolderJointsand theCu-pad 412 11.3. MechanicalFatigueTestingEquipmentandLoadConditionintheLeadFree Solder 413 11.4. ResultsofMechanicalFatigueTest 414 11.5. CriticalFatigueStressLimitfortheIntermetallicCompoundLayer 417 11.6. Influence of the Plating Material on the Fatigue Life of Sn-Zn (Sn-9Zn and Sn-8Zn-3Bi)SolderJoints 424 11.7. Conclusion 426 References 426 Chapter12 Lead-FreeSolderMaterials:DesignForReliability JohnH.L.Pang 429 12.1. Introduction 429 12.2. MechanicsofSolderMaterials 430 12.2.1. FatigueBehaviorofSolderMaterials 431 12.3. DesignForReliability(DFR) 433

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.