ebook img

Methods of Quantization: Lectures Held at the 39. Universitätswochen für Kern-und Teilchenphysik, Schladming, Austria PDF

234 Pages·2001·1.705 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Methods of Quantization: Lectures Held at the 39. Universitätswochen für Kern-und Teilchenphysik, Schladming, Austria

Lecture Notes in Physics EditorialBoard R.Beig,Wien,Austria J.Ehlers,Potsdam,Germany U.Frisch,Nice,France K.Hepp,Zu¨rich,Switzerland W.Hillebrandt,Garching,Germany D.Imboden,Zu¨rich,Switzerland R.L.Jaffe,Cambridge,MA,USA R.Kippenhahn,Go¨ttingen,Germany R.Lipowsky,Golm,Germany H.v.Lo¨hneysen,Karlsruhe,Germany I.Ojima,Kyoto,Japan H.A.Weidenmu¨ller,Heidelberg,Germany J.Wess,Mu¨nchen,Germany J.Zittartz,Ko¨ln,Germany 3 Berlin Heidelberg NewYork Barcelona HongKong London Milan Paris Singapore Tokyo EditorialPolicy TheseriesLectureNotesinPhysics(LNP),foundedin1969,reportsnewdevelopmentsin physicsresearchandteaching--quickly,informallybutwithahighquality.Manuscripts to be considered for publication are topical volumes consisting of a limited number of contributions,carefullyeditedandcloselyrelatedtoeachother.Eachcontributionshould containatleastpartlyoriginalandpreviouslyunpublishedmaterial,bewritteninaclear, pedagogical style and aimed at a broader readership, especially graduate students and nonspecialistresearcherswishingtofamiliarizethemselveswiththetopicconcerned.For thisreason,traditionalproceedingscannotbeconsideredforthisseriesthoughvolumes toappearinthisseriesareoftenbasedonmaterialpresentedatconferences,workshops and schools (in exceptional cases the original papers and/or those not included in the printedbookmaybeaddedonanaccompanyingCDROM,togetherwiththeabstracts of posters and other material suitable for publication, e.g. large tables, colour pictures, programcodes,etc.). Acceptance Aprojectcanonlybeacceptedtentativelyforpublication,byboththeeditorialboardandthe publisher,followingthoroughexaminationofthematerialsubmitted.Thebookproposal senttothepublishershouldconsistatleastofapreliminarytableofcontentsoutliningthe structureofthebooktogetherwithabstractsofallcontributionstobeincluded. Finalacceptanceisissuedbytheserieseditorincharge,inconsultationwiththepublisher, onlyafterreceivingthecompletemanuscript.Finalacceptance,possiblyrequiringminor corrections, usually follows the tentative acceptance unless the final manuscript differs significantlyfromexpectations(projectoutline).Inparticular,theserieseditorsareentitled torejectindividualcontributionsiftheydonotmeetthehighqualitystandardsofthis series.Thefinalmanuscriptmustbecamera-ready,andshouldincludebothaninformative introductionandasufficientlydetailedsubjectindex. ContractualAspects PublicationinLNPisfreeofcharge.Thereisnoformalcontract,noroyaltiesarepaid, andnobulkordersarerequired,althoughspecialdiscountsareofferedinthiscase.The volumeeditorsreceivejointly30freecopiesfortheirpersonaluseandareentitled,asarethe contributingauthors,topurchaseSpringerbooksatareducedrate.Thepublishersecures thecopyrightforeachvolume.Asarule,noreprintsofindividualcontributionscanbe supplied. ManuscriptSubmission Themanuscriptinitsfinalandapprovedversionmustbesubmittedincamera-readyform. Thecorrespondingelectronicsourcefilesarealsorequiredfortheproductionprocess,in particulartheonlineversion.Technicalassistanceincompilingthefinalmanuscriptcanbe providedbythepublisher’sproductioneditor(s),especiallywithregardtothepublisher’s ownLatexmacropackagewhichhasbeenspeciallydesignedforthisseries. OnlineVersion/LNPHomepage LNPhomepage(listofavailabletitles,aimsandscope,editorialcontactsetc.): http://www.springer.de/phys/books/lnpp/ LNPonline(abstracts,full-texts,subscriptionsetc.): http://link.springer.de/series/lnpp/ H. Latal W. Schweiger (Eds.) Methods of Quantization Lectures Held at the 39. Universita¨tswochen fu¨r Kern- und Teilchenphysik, Schladming, Austria 1 3 Editors H.Latal W.Schweiger Institutfu¨rTheoretischePhysik Universita¨tGraz Universita¨tsplatz5 8010Graz,Austria SupportedbytheO¨sterreichischeBundesministeriumfu¨rWirtschaft, VerkehrundKunst,Vienna,Austria Coverpicture:seecontributionbyB.Bakkerinthisvolume. LibraryofCongressCataloging-in-PublicationDataappliedfor. DieDeutscheBibliothek-CIP-Einheitsaufnahme Methodsofquantization:lecturesheldatthe39.Universita¨tswochenfu¨r Kern-undTeilchenphysik,Schladming,Austria/H.Latal;W.Schweiger (ed.).-Berlin;Heidelberg;NewYork;Barcelona;HongKong;London; Milan;Paris;Singapore;Tokyo:Springer,2001 (Lecturenotesinphysics;572) (Physicsandastronomyonlinelibrary) ISBN3-540-42100-9 ISSN0075-8450 ISBN3-540-42100-9Springer-VerlagBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustra- tions, recitation, broadcasting, reproduction on microfilm or in any other way, and storageindatabanks.Duplicationofthispublicationorpartsthereofispermittedonly undertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,initscurrent version,andpermissionforusemustalwaysbeobtainedfromSpringer-Verlag.Violations areliableforprosecutionundertheGermanCopyrightLaw.Springer-VerlagBerlinHei- delbergNewYork amemberofBertelsmannSpringerScience+BusinessMediaGmbHhttp://www.springer.de (cid:1)c Springer-VerlagBerlinHeidelberg2001 PrintedinGermanyTheuseofgeneraldescriptivenames,registerednames,trademarks, etc.inthispublicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuch namesareexemptfromtherelevantprotectivelawsandregulationsandthereforefreefor generaluse. Typesetting:Camera-readybytheauthors/editors Camera-dataconversionbySteingraeberSatztechnikGmbHHeidelberg Coverdesign:design&production,Heidelberg Printedonacid-freepaper SPIN:10836063 55/3141/du-543210 Preface This volume contains the written versions of invited lectures presented at the“39.InternationaleUniversita¨tswochenfu¨rKern-undTeilchenphysik”in Schladming, Austria, which took place from February 26th to March 4th, 2000. The title of the school was “Methods of Quantization”. This is, of course, a very broad field, so only some of the new and interesting develop- ments could be covered within the scope of the school. About 75 years ago Schro¨dinger presented his famous wave equation and Heisenberg came up with his algebraic approach to the quantum-theoretical treatment of atoms. Aiming mainly at an appropriate description of atomic systems, these original developments did not take into consideration Ein- stein’s theory of special relativity. With the work of Dirac, Heisenberg, and Pauliitsoonbecameobviousthataunifiedtreatmentofrelativisticandquan- tumeffectsisachievedbymeansoflocalquantumfieldtheory,i.e.anintrinsic many-particle theory. Most of our present understanding of the elementary building blocks of matter and the forces between them is based on the quan- tizedversionoffieldtheorieswhicharelocallysymmetricundergaugetrans- formations. Nowadays, the prevailing tools for quantum-field theoretical cal- culations are covariant perturbation theory and functional-integral methods. Being not manifestly covariant, the Hamiltonian approach to quantum-field theories lags somewhat behind, although it resembles very much the familiar nonrelativisticquantummechanicsofpointparticles.Aparticularlyinterest- ing Hamiltonian formulation of quantum-field theories is obtained by quan- tizing the fields on hypersurfaces of the Minkowsi space which are tangential to the light cone. The “time evolution” of the system is then considered in “light-cone time” x+ = t+z/c. The appealing features of “light-cone quan- tization”, which are the reasons for the renewed interest in this formulation ofquantumfieldtheories,werehighlightedinthelecturesofBernardBakker and Thomas Heinzl. One of the open problems of light-cone quantization is theissueofspontaneoussymmetrybreaking.Thiscanbetracedbacktozero modes which, in general, are subject to complicated constraint equations. A general formalism for the quantization of physical systems with constraints waspresentedbyJohnKlauder.Theperturbativedefinitionofquantumfield theories is in general afflicted by singularities which are overcome by a regu- larizationandrenormalizationprocedure.Structuralaspectsoftherenormal- VI Preface ization problem in the case of gauge invariant field theories were discussed in the lecture of Klaus Sibold. A review of the mathematics underlying the functional-integral quantization was given by Ludwig Streit. Apart from the topics included in this volume there were also lectures on the Kaluza–Klein program for supergravity (P. van Nieuwenhuizen), on dynamical r-matrices and quantization (A. Alekseev), and on the quantum Liouville model as an instructive example of quantum integrable models (L. Faddeev). In addition, the school was complemented by many excellent sem- inars. The list of seminar speakers and the topics addressed by them can be foundattheendofthisvolume.Theinterestedreaderisrequestedtocontact the speakers directly for detailed information or pertinent material. Finally,wewouldliketoexpressourgratitudetothelecturersforalltheir effortsandtothemainsponsorsoftheschool,theAustrianMinistryofEdu- cation,Science,andCultureandtheGovernmentofStyria,forprovidinggen- erous support. We also appreciate the valuable organizational and technical assistanceofthetownofSchladming,theSteyr-Daimler-PuchFahrzeugtech- nik, Ricoh Austria, Styria Online, and the Hornig company. Furthermore, we thank our secretaries, S. Fuchs and E. Monschein, a number of gradu- ate students from our institute, and, last but not least, our colleagues from the organizing committee for their assistance in preparing and running the school. Graz, Heimo Latal March 2001 Wolfgang Schweiger Contents Forms of Relativistic Dynamics Bernard L.G. Bakker ............................................ 1 1 Introduction ................................................ 1 2 The Poincar´e Group ......................................... 3 3 Forms of Relativistic Dynamics ............................... 4 3.1 Comparison of Instant Form, Front Form, and Point Form ... 6 4 Light-Front Dynamics........................................ 9 4.1 Relative Momentum, Invariant Mass ...................... 9 4.2 The Box Diagram....................................... 14 5 Poincar´e Generators in Field Theory........................... 19 5.1 Fermions Interacting with a Scalar Field................... 20 5.2 Instant Form........................................... 20 5.3 Front Form (LF)........................................ 21 5.4 Interacting and Non-interacting Generators on an Instant and on the Light Front .................................. 22 6 Light-Front Perturbation Theory .............................. 23 6.1 Connection of Covariant Amplitudes to Light-Front Amplitudes ............................... 24 6.2 Regularization.......................................... 26 6.3 Minus Regularization.................................... 26 7 Triangle Diagram in Yukawa Theory........................... 27 7.1 Covariant Calculation .................................. 28 7.2 Construction of the Current in LFD....................... 30 7.3 Numerical Results ...................................... 37 8 Four Variations on a Theme in φ3 Theory ...................... 37 8.1 Covariant Calculation ................................... 39 8.2 Instant-Form Calculation ................................ 42 8.3 Calculation in Light-Front Coordinates .................... 47 8.4 Front-Form Calculation.................................. 49 9 Dimensional Regularization: Basic Formulae .................... 51 10 Four-Dimensional Integration ................................. 52 11 Some Useful Integrals........................................ 53 References ..................................................... 53 VIII Contents Light-Cone Quantization: Foundations and Applications Thomas Heinzl ................................................. 55 1 Introduction ................................................ 55 2 Relativistic Particle Dynamics ................................ 58 2.1 The Free Relativistic Point Particle ....................... 58 2.2 Dirac’s Forms of Relativistic Dynamics .................... 64 2.3 The Front Form ........................................ 68 3 Light-Cone Quantization of Fields ............................. 74 3.1 Construction of the Poincar´e Generators................... 74 3.2 Schwinger’s (Quantum) Action Principle................... 76 3.3 Quantization as an Initial- and/or Boundary-Value Problem.. 78 3.4 DLCQ – Basics......................................... 84 3.5 DLCQ – Causality ...................................... 88 3.6 The Functional Schro¨dinger Picture ....................... 94 3.7 The Light-Cone Vacuum................................. 96 4 Light-Cone Wave Functions................................... 98 4.1 Kinematics............................................. 99 4.2 Definition of Light-Cone Wave Functions .................. 101 4.3 Properties of Light-Cone Wave Functions .................. 104 4.4 Examples of Light-Cone Wave Functions................... 105 5 The Pion Wave Function in the NJL Model..................... 113 5.1 A Primer on Spontaneous Chiral Symmetry Breaking ....... 114 5.2 NJL Folklore........................................... 117 5.3 Schwinger–Dyson Approach .............................. 121 5.4 Observables ............................................ 127 6 Conclusions................................................. 136 References ..................................................... 138 Quantization of Constrained Systems John R. Klauder................................................ 143 1 Introduction ................................................ 143 1.1 Initial Comments ....................................... 143 1.2 Classical Background.................................... 144 1.3 Quantization First: Standard Operator Quantization ........ 145 1.4 Reduction First: Standard Path Integral Quantization ....... 146 1.5 Quantization First (cid:1)≡ Reduction First ..................... 147 1.6 Outline of the Remaining Sections ........................ 148 2 Overview of the Projection Operator Approach to Constrained System Quantization........................... 148 2.1 Coherent States ........................................ 148 2.2 Constraints ............................................ 149 2.3 Dynamics for First-Class Systems......................... 150 2.4 Zero in the Continuous Spectrum ......................... 151 2.5 Alternative View of Continuous Zeros ..................... 152 Contents IX 3 Coherent State Path Integrals Without Gauge Fixing ....................................... 152 3.1 Enforcing the Quantum Constraints....................... 153 3.2 Reproducing Kernel Hilbert Spaces ....................... 154 3.3 Reduction of the Reproducing Kernel ..................... 155 3.4 Single Regularized Constraints ........................... 156 3.5 Basic First-Class Constraint Example ..................... 157 4 Application to General Constraints ............................ 158 4.1 Classical Considerations ................................. 158 4.2 Quantum Considerations ................................ 160 4.3 Universal Procedure to Generate Single Regularized Constraints ................ 162 4.4 Basic Second-Class Constraint Example ................... 164 4.5 Conversion Method ..................................... 165 4.6 Equivalent Representations .............................. 166 4.7 Equivalence of Criteria for Second-Class Constraints ........ 167 5 Selected Examples of First-Class Constraints.................... 168 5.1 General Configuration Space Geometry.................... 168 5.2 Finite-Dimensional Hilbert Space Examples ................ 170 5.3 Helix Model............................................ 172 5.4 Reparameterization Invariant Dynamics ................... 173 5.5 Elevating the Lagrange Multiplier to an Additional Dynamical Variable...................... 175 6 Special Applications ......................................... 176 6.1 Algebraically Inequivalent Constraints..................... 176 6.2 Irregular Constraints .................................... 178 7 Some Other Applications of the Projection Operator Approach .......................... 180 References ..................................................... 181 Algebraic Methods of Renormalization Klaus Sibold.................................................... 183 1 Generalities................................................. 183 1.1 Renormalization Schemes ................................ 183 1.2 The Action Principle.................................... 186 1.3 Green Functions and Operators........................... 189 2 The Quantization of Gauge Theories........................... 190 2.1 The Abelian Case....................................... 190 2.2 BRS Transformations ................................... 192 2.3 The Slavnov–Taylor Identity ............................. 194 3 Applications ................................................ 197 3.1 The Electroweak Standard Model......................... 197 3.2 Supersymmetry in Non-linear Realization .................. 201 3.3 SUSY Gauge Theories................................... 202 References ..................................................... 205 X Contents Functional Integrals for Quantum Theory Ludwig Streit................................................... 207 1 Introduction ................................................ 207 2 White Noise Analysis ........................................ 208 2.1 Smooth and Generalized Functionals ...................... 210 2.2 Characterization of Generalized Functionals Φ∈(S)∗........ 210 2.3 Calculus............................................... 212 3 Quantum Field Theory....................................... 213 3.1 The Vacuum Density.................................... 213 3.2 Dynamics in Terms of the Vacuum........................ 214 4 Feynman Integrals........................................... 216 4.1 The Interactions........................................ 218 4.2 The Morse Potential .................................... 220 References ..................................................... 221 Seminars ..................................................... 223

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.