ebook img

Method and implementation of the inertial frame bundle block adjustment PDF

129 Pages·2017·3.35 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Method and implementation of the inertial frame bundle block adjustment

Determining Rotational Elements of Planetary Bodies Method and Implementation of an Inertial Frame Bundle Block Adjustment vorgelegt von Dipl.-Math. Steffi Burmeister geb. in Schwerin von der Fakultät VI – Planen Bauen Umwelt der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften – Dr.-rer.-nat. – genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Frank Neitzel Gutachter: Prof. Dr. Jürgen Oberst Gutachter: Prof. Dr. Jürgen Kusche Tag der wissenschaftlichen Aussprache: 27. Januar 2017 Berlin 2017 Acknowledgement I’d like to thank Professor J. Oberst for the opportunity to write a PhD thesis and do research on a fascinating and inspiring topic, for the gained insight in the field of planetary geodesy and the knowledge that I was able to gather during the past four years of work under his supervision. I am also grateful to my colleagues Dr. K. Willner, A. Pasewaldt and to F. Preusker for various discussions and especially for providing the data sets of Phobos and Vesta used for this work. Finally I thank Simon Fear for his clear opinion about tables, and my family and friends for their curiosity, encouragements and kindness. Abstract The rotational elements of a planetary body state its orientation in space with respect to the International Celestial Reference Frame (ICRF). They are used for computing control point networks (CPNs) and for creating e.g. maps or terrain models of the body. This work describes the inertial frame bundle block adjustment. It is a method to determine rotational elements of planetary bodies in a direct and analytical way from image point measurements. Simul- taneously with the rotational parameters, a corresponding CPN is computed and the external orientation data of the camera are improved. In contrary to the classical photogrammetric bundle block adjustment, here the interdepen- dence of the body’s rotational model and the camera’s external orientation is resolved. The method was tested on simulated data and applied to two real science cases. The amplitude of forced libration, which contributes to the ori- entation of the prime meridian, was determined for the Martian moon Phobos. Using combined images of the missions Viking and Mars Express, an ampli- tude of 1:13(cid:14) (cid:6)0:13 was computed together with a CPN of 680 points and an uncertainty of ? 55 m. The amplitude is in agreement with previous results, derived by indirect methods (e.g. Willner et al., 2010; Oberst et al., 2014). Secondly, the pole axis orientation of Vesta was confirmed using images of the current Dawn mission. The computed CPN of 82806 points is compared with the body-fixed solution of Preusker et al. (2012), showing that both networks are plausible within the average intersection error of 10 m. The software which was implemented is focusing on the application to large data sets. It could be achieved that the costs of memory and running time depend only on the num- ber of images. In the example of Vesta with 5440 images, 164 hours (out of 168) are saved with respect to a reference adjustment software. The method is suitable to study and refine rotational models of bodies with solid surfaces. adjustment, bundle block adjustment ICRF, forced libration amplitude, Phobos, Vesta, parallel inversion Zusammenfassung Die Rotationselemente eines planetaren Körpers geben seine Orientierung im Raum in Bezug auf den internationalen Himmelsreferenzrahmen (engl. ICRF) an. Sie sind notwendig für die Berechnung von Kontrollpunktnetzen (KPN) und für die Erstellung von z.B. Karten oder Geländemodellen des Körpers. Diese Arbeit beschreibt den Bündelblockausgleich im inertialen Referenzrah- men. Das ist eine Methode, um Rotationselemente planetarer Körper direkt und analytisch anhand photogrammetrischer Messungen zu bestimmen. Si- multan wird ein KPN berechnet und die externen Orientierungen der Kamera werden verbessert. Im Gegensatz zum klassischen körperfesten Bündelblock- ausgleich ist hier die bestehende Abhängigkeit zwischen dem Rotationsmo- dell des Körpers und der Kameraorientierung aufgelöst. Die Methode wurde anhand einer Simulation getestet und auf zwei reale Datensätze angewandt. Die Amplitude der erzwungenen Libration, die sich auf die Orientierung des Hauptmeridians auswirkt, wurde für den Marsmond Phobos bestimmt. Mittels Bilddaten aus den Missionen Viking und Mars Express ist eine Amplitude von 1;13(cid:14) ((cid:6)0;13) berechnet worden, das zugehörige KPN mit 680 Punkten hat eine Unsicherheit von ? 55 m. Die Amplitude stimmt mit den Ergebnissen von Willner et al. (2010) und Oberst et al. (2014), die durch indirekte Me- thoden erhalten wurden, überein. Die Polachsenorientierung von Vesta wurde mittels Bilddaten aus der aktuellen Dawn Mission bestätigt. Das berechnete KPN mit 82806 Punkten wurde verglichen mit dem Ergebnis von Preusker et al. (2012) aus einem körperfesten Bündelblockausgleich; beide Lösungen sind innerhalb des mittleren Schnittfehlers von 10 m plausibel. Die Software wurde mit Schwerpunkt auf große Datensätze implementiert. Dabei konnte erreicht werden, dass die Kosten für Speicher und Laufzeit nur von der Anzahl der Bil- der abhängig sind. Beim Vesta-Beispiel mit 5440 Bildern werden im Vergleich zu einer Referenz-Software 164 von 168 Stunden eingespart. Die Methode ist geeignet, um Rotationsmodelle von planetaren Körpern mit fester Oberfläche zu studieren und zu verbessern. Ausgleichsrechnung,BündelblockausgleichICRF,Librationsamplitude,Pho- bos, Vesta, parallele Inversion Contents 1 Introduction 1 1.1 Motivation and content . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Reference frames . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 International Celestial Reference Frame (ICRF) . . . . . 5 1.2.2 Hipparcos Celestial Reference Frame (HCRF) . . . . . . 7 1.2.3 Spacecraft and camera reference frame . . . . . . . . . . 7 1.2.4 Body-fixed reference frame . . . . . . . . . . . . . . . . . 9 1.3 Rotational elements . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Control point network analysis . . . . . . . . . . . . . . . . . . . 13 1.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.6 Missions and data . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 Definitions and Foundations 23 2.1 Mathematical foundations and notation . . . . . . . . . . . . . . 23 2.2 Conversion between reference frames . . . . . . . . . . . . . . . 25 2.3 Body-fixed bundle block adjustment . . . . . . . . . . . . . . . . 28 2.3.1 The functional model . . . . . . . . . . . . . . . . . . . . 30 2.3.2 The stochastic model . . . . . . . . . . . . . . . . . . . . 34 3 Inertial Frame Bundle Block Adjustment 37 3.1 The extended functional model . . . . . . . . . . . . . . . . . . 37 3.2 Derivatives of rotational elements . . . . . . . . . . . . . . . . . 39 3.3 Derivatives of classical parameters . . . . . . . . . . . . . . . . . 42 3.4 Test case - a simulation of Phobos . . . . . . . . . . . . . . . . . 43 3.5 Numerical stability . . . . . . . . . . . . . . . . . . . . . . . . . 48 i 4 Application to Large Data Sets 51 4.1 Sparse matrix compression . . . . . . . . . . . . . . . . . . . . . 53 4.2 Optimisation of running time . . . . . . . . . . . . . . . . . . . 60 4.2.1 The splitting technique . . . . . . . . . . . . . . . . . . . 60 4.2.2 The inverse decomposition method . . . . . . . . . . . . 61 4.2.3 Sufficiency of the inverse decomposition . . . . . . . . . . 63 4.2.4 An iterative inverse decomposition algorithm . . . . . . . 66 4.2.5 Parallel computation . . . . . . . . . . . . . . . . . . . . 71 4.3 Implementation of the decomposition algorithm in OpenCL . . . 73 4.3.1 Memory design . . . . . . . . . . . . . . . . . . . . . . . 74 4.3.2 Tile size . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3.3 Work-groups and work-items . . . . . . . . . . . . . . . . 75 4.3.4 The parallel decomposition algorithm . . . . . . . . . . . 76 5 Application to the science cases Phobos and Vesta 81 5.1 Phobos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.1.1 Forced libration amplitude . . . . . . . . . . . . . . . . . 83 5.1.2 Control point network for Phobos . . . . . . . . . . . . . 83 5.2 Vesta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2.1 Pole axis orientation . . . . . . . . . . . . . . . . . . . . 87 5.2.2 Comparison with previous CPN solution . . . . . . . . . 88 5.2.3 Surface spherical harmonics analysis . . . . . . . . . . . 90 6 Conclusions and Outlook 97 6.1 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . 97 6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Bibliography 101 A Appendix 105 A.1 Proof of the split technique . . . . . . . . . . . . . . . . . . . . 105 A.2 Backward operation in split mode . . . . . . . . . . . . . . . . . 106 A.3 Phobos tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 A.4 Centre of figure . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 B Code examples for Compressed Sparse Matrices 115 Chapter 1 Introduction 1.1 Motivation and content Since the final decades of the 20th century, spacecraft have been launched to studyobjectsinthesolarsystem. Inmanycasesthespacecraftcarriesanimag- ing system to gather optical information about the target. For this thesis the focus is set on planetary bodies with solid surfaces - that means planets, dwarf planets, moons, asteroids or comets which are suitable for a photogrammetric survey. In the field of planetary geodesy images are used to study properties of planetary bodies, e.g. topography, shape and rotation. Major objectives of these studies are the definition of reference systems, the determination of rotational parameters as well as mapping and modelling of planetary surfaces. This includes in particular the computation of control point networks (CPNs) which are a first-order realisation of the body’s reference system and define the body-fixed reference frame by three-dimensional coordinates. While a body moves in space, it changes its orientation e.g. by self-rotation, the precession of the pole axis or librations. These changes in orientation are described by the rotational model of the body in terms of functions of time, formulated with respect to an inertial reference system. These functions indicate the direction of the pole axis as well as the orientation of the body’s prime meridian. Any error in the rotational model contributes to a misalignment between optical measurements and the corresponding ground coordinates. Hence, in order to create stable maps of high quality, a precise knowledge of the rotational pa- rameters is desired. 1 2 In the past century spin poles, rates and sense of rotation of the large asteroids were mostly determined by earth-based measurements of lightcurves and an analysis which included a theoretical shape model. Magnusson (1986) gives a good overview about the applied methods and the literature of that era. He consolidated some of the common methods and proposed a procedure which is here referred to as (parameter) range scan method. There, a series of anal- yses with trial values for the parameters to be determined is performed, and the data are statistically evaluated such that a best-fit yields the final result. This approach, gradually improved e.g. by De Angelis (1993), was widely used. With the available image data of the Hubble Space Telescope Camera and the spacecraft missions, the trial values are typically evaluated with re- spect to a computed CPN or the related improvements of image observations (Thomas et al., 1995). A special effect, that has been verified for a few moons in the solar system, is the forced libration of satellites. This small variation in the mean self rotation rate depends on the satellite’s moments of inertia and the gravitational torque that a primary body exerts on its satellite. The amplitude of the forced libration contributes to the orientation of the prime meridian and is therefore an important rotational parameter. An angular error in the model about the prime rotation axis will lead to a positional error of the control points; this error is proportional to the size of the body. Further- more, since the magnitude of this libration is related to the magnitude of the gravitational torque, conclusions about the internal structure of a body can be drawn (Murray and Dermott, 1999). By applying the range scan method with a bundle block adjustment or similar type of CPN analysis, amplitudes of forced libration have been obtained for the Martian moon Phobos (Duxbury and Callahan, 1989; Willner et al., 2010, a.o.) as well as for the Saturnian moons Janus, Epimetheus (Tiscareno et al., 2009) and Mimas (Tajeddine et al., 2013). An alternative method has been introduced by Oberst et al. (2014) who used a rotation model of Phobos without longitudinal libration and eval- uated the spacecraft position residuals over the anomalistic period1 after a bundle block adjustment. With respect to Phobos also a theoretical approach has been used, where the equations of motion are solved by numerical integra- tion and the magnitude of forced libration could be determined as one of the 1pericenter to pericenter

Description:
Inertial Frame Bundle Block Adjustment vorgelegt von. Dipl.-Math. Steffi Burmeister geb. in Schwerin von der Fakultät VI – Planen Bauen Umwelt .. As Thomas et al. (1997) could determine the spin pole of Vesta with very few images, the precession movement, recently indicated by theoretical
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.