Metals in Society and in the Environment ENVIRONMENTAL POLLUTION VOLUME 8 Editors Brian J. Alloway, Department of Soil Science, The University of Reading, U.K. Jack T. Trevors, Department of Environmental Biology, University of Guelph, Ontario, Canada Editorial Board T. Anderson, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, U.S.A. T.H. Christensen, Department of Environmental Science and Engineering, Danish Technical University, Lyngby, Denmark I. Colbeck, Institute for Environmental Research, Department of Biological Sciences, University of Essex, Colchester, U.K. K.C. Jones, Institute of Environmental and Natural Sciences, Lancaster University, U.K. S. Parry, T.H. Huxley School of Environment, Earth Sciences and Engineering, Imperial College at Silwood Park, Ascot, Berks, U.K. W. Salomons, GKSS Research Center, Geesthacht, Germany The titles published in this series are listed at the end of this volume. Metals in Society and in the Environment A Critical Review of Current Knowledge on Fluxes, Speciation, Bioavailability and Risk for Adverse Effects of Copper, Chromium, Nickel and Zinc by Lars Landner AF-Environmental Research Group (AF-MFG), Stockholm, Sweden and Rudolf Reuther enas Environmental Assessments, Albertshofen, Germany KLUWER ACADEMIC PUBLISHERS NEW YORK,BOSTON, DORDRECHT, LONDON, MOSCOW eBookISBN: 1-4020-2742-7 Print ISBN: 1-4020-2740-0 ©2005 Springer Science + Business Media, Inc. Print ©2004 Kluwer Academic Publishers Dordrecht All rights reserved No part of this eBook maybe reproducedor transmitted inanyform or byanymeans,electronic, mechanical, recording, or otherwise, without written consent from the Publisher Created in the United States of America Visit Springer's eBookstore at: http://ebooks.springerlink.com and the Springer Global Website Online at: http://www.springeronline.com Table of Contents Figures ............................................................................................xi Tables................................................................................................xiii Acknowledgements............................................................................xx 0 EXECUTIVE SUMMARY AND CONCLUSIONS........1 0.1 Introduction..........................................................................1 0.2 Metal Fluxes from Society to the Environment and between Environmental Media.............................................3 0.2.1 The European Copper Cycle in the Mid-1990s....................4 0.2.2 Metal Fluxes from Mining Waste – Falun Copper Mine.....5 0.2.3 Urban Metal Flows – the Case of Stockholm.......................6 0.2.4 Critical Steps in Metal Fluxes from Cities to the Environment.........................................................................7 0.3 Speciation, Bioavailability and Effects of Trace Metals in the Environment...................................................................8 0.3.1 In the Water Column - BLM as a Tool for Prediction of Toxicity................................................................................9 0.3.2 In Aquatic Sediments – AVS as a Tool for Prediction.......10 0.3.3 In Soils – Laboratory versus Field Tests............................11 0.4 General Conclusions...........................................................12 1 PURPOSE OF THIS REVIEW.......................................15 1.1 Background and justification..............................................15 1.2 The need and how to meet it..............................................17 1.3 Target groups for the updated report..................................18 1.4 Implementation of the work...............................................18 2 GLOBAL EXTRACTION, PRODUCTION AND CONSUMPTION..............................................................21 2.1 Copper................................................................................21 2.2 Nickel.................................................................................22 2.3 Zinc.....................................................................................23 vi 3 METAL CYCLES IN DEFINED GEOGRAPHICAL AREAS: EUROPE, THE NETHERLANDS AND STOCKHOLM.................................................................25 3.1 Example 1: The European Copper Cycle..........................25 3.1.1 Introduction........................................................................26 3.1.2 Selection of boundaries of the system to be studied..........28 3.1.3 Some definitions and characterisation of the technical components.........................................................................29 3.1.3.1. Production (mining, milling, concentration, smelting, refining)..............................................................................29 3.1.3.2. Fabrication, manufacturing and use...................................30 3.1.4 Waste management subsystem...........................................33 3.1.5 Summary of stocks and flows of copper in European society, in 1994...................................................................37 3.2 Example 2: Dynamic Modelling of Metal Flows in the Netherlands; Cu and Zn......................................................40 3.2.1 Models used........................................................................40 3.2.2 Summary of main results....................................................42 3.2.3 Critical review of the Dutch calculations...........................46 3.3 Example 3: Urban Metal Flows – Stockholm; Cr, Cu, Ni and Zn..............................................................48 3.3.1 New aspects of studies on urban metal flows.....................50 3.3.2 Stock of metals in Stockholm.............................................51 3.3.3 Outflows of metals from existing stocks to the solid waste compartment.............................................................53 3.3.4 Outflows via other routes, e.g. diffuse emissions from goods..................................................................................53 3.3.5 Metal fluxes to and from sewage treatment plants in Stockholm...........................................................................55 3.3.6 Constraints in metal cycling to arable land with sewage sludge..................................................................................59 3.3.7 Metal fluxes with groundwater in Stockholm....................59 3.3.8 Metal accumulation and metal pools in urban soils in Stockholm...........................................................................61 3.3.9 Metal fluxes to sediments of lakes and coastal areas in Stockholm...........................................................................65 vii 4 CRITICAL STEPS IN METAL FLUXES FROM SOCIETY TO THE ENVIRONMENT – SOME CASE STUDIES..................................................71 4.1 Case Study 1: Corrosion and runoff of metals from roofing materials made of copper, galvanized steel or stainless steel (Cu, Zn, Cr and Ni)......................................72 4.1.1 Definitions, background and experimental approaches.....73 4.1.2 Some principal results........................................................75 4.1.3 Releases and fluxes of copper............................................76 4.1.4 Releases and flows of zinc.................................................80 4.1.5 Releases and flows of chromium and nickel......................84 4.2 Case Study 2: Relative importance of the traffic sector for metal fluxes from the urban environment to aquatic ecosystems..........................................................................86 4.2.1 Difficulties to quantify the contribution of street traffic to trace metal fluxes...........................................................87 4.2.2 Bioavailability to aquatic organisms of traffic-emitted metals..................................................................................88 4.2.3 Level of contamination with bioavailable trace metals in the waterways of central Stockholm, compared to other waters..................................................................................92 4.2.4 Possible over-interpretation of bioaccumulation data – a critical review..................................................................94 4.2.5 Which conclusions from the study are justified ?..............96 4.3 Case Study 3: Metal fluxes from households to STPs, sludge and agricultural soils...............................................98 4.3.1 Origin of trace metals in STPs and in sewage sludge........99 4.3.2 Assessment of the causes of copper release from tap water pipes........................................................................101 4.3.3 Use of sewage sludge as a fertiliser in agriculture...........105 4.3.4 Permitted trace metal loads to agricultural soils..............106 4.3.5 Sustainable trace metal loadings to agricultural soils......108 4.3.5.1 Trace metal deficiency symptoms and how to correct them..................................................................................109 4.3.5.2 Application of sewage sludge to soils – risk of metal toxicity to soil ecosystems................................................110 4.3.5.3 Long-term field studies – effects of sewage sludge application to soils............................................................110 viii 4.3.5.4 Conclusions regarding sustainable trace metal loadings to agricultural soils...........................................................117 4.4 Case Study 4: Metal fluxes from mine waste to rivers – Falun Copper Mine...........................................................120 4.4.1 Background and definition of the case to be discussed....121 4.4.2 Brief description of the level of pollution with metals in water and sediments of receiving rivers and lakes...........124 4.4.3 Biological responses to the enhanced metal concentrations...................................................................127 4.4.4 Some conclusions from the Falun studies........................130 4.5 Summing up: Fluxes of Cr, Cu, Ni and Zn from Society to the Environment..............................................131 5 SPECIATION, MOBILITY AND BIOAVAILABILITY OF METALS IN THE ENVIRONMENT...........................................................139 5.1 Introduction......................................................................139 5.1.1 General considerations.....................................................139 5.1.2 Definitions........................................................................141 5.1.3 Fundamental properties of the selected metals.................142 Chromium.........................................................................144 Copper..............................................................................145 Nickel...............................................................................146 Zinc...................................................................................147 5.2 In surface waters...............................................................149 5.2.1 Metal speciation in the aqueous (dissolved) phase..........151 5.2.2 Adsorption versus bioavailability.....................................156 5.2.3 Competition between aqueous and solid phases..............158 5.3 In groundwaters................................................................160 5.4 In aquatic sediments.........................................................163 5.4.1 Introduction......................................................................163 5.4.2 Today’s knowledge on metal speciation in sediment/water systems....................................................164 5.4.2.1 General overview.............................................................165 5.4.2.2 Total concentration approach...........................................166 5.4.2.3 Partly theoretical approaches to metal speciation............167 5.4.2.4 More empirical approaches to metal speciation (chemical extraction)........................................................168 5.4.3 The Acid-Volatile Sulphides (AVS) concept...................170 ix 5.4.3.1 Development and application...........................................172 5.4.3.2 Refinement of the “AVS hypothesis”..............................181 5.4.3.3 Operational drawbacks of SEM/AVS-based approaches.187 5.4.3.4 New empirical evidence...................................................192 5.4.4 Chemical extraction and mobility....................................197 5.4.5 New spectroscopic approaches.........................................201 5.4.6 Bioturbation, resuspension and bioirrigation...................206 5.4.7 Metal-ligand interactions..................................................214 5.4.7.1 Free ion activity model (FIAM).......................................215 5.4.7.2 Surface complexation.......................................................218 5.4.8 Speciation-bioavailability interactions in sediment-ingesting biota...................................................222 5.4.8.1 Absorption efficiency (AE)..............................................223 5.4.8.2 Gut juice extraction..........................................................227 5.4.9 Redox effects....................................................................230 5.5 In soils..............................................................................232 5.5.1 Introduction......................................................................232 5.5.2 Metal adsorption and partitioning....................................233 5.5.3 Chemical extraction and plant uptake..............................237 5.5.4 Surface reactions..............................................................246 5.5.5 Redox effects....................................................................250 5.5.6 Aging and weathering......................................................254 5.5.7 Sludge application and contaminated soils......................258 5.6 In biota..............................................................................265 5.7 A proposal for “natural” or “preindustrial” regional background levels of metals in the sediment in waters surrounding Stockholm....................................................271 6 BIOTIC LIGAND MODELS........................................275 6.1 Need for improved models to assess bioavailable fraction of metals..............................................................276 6.2 Development of Biotic Ligand Models............................279 6.3 Application of BLMs........................................................284 7 TOXIC AND OTHER ADVERSE BIOLOGICAL EFFECTS OF TRACE METALS.................................289 7.1 Toxicity to aquatic organisms in the water column.........290 7.1.1 Copper..............................................................................292 7.1.1.1 Sensitivity to copper of different aquatic organisms........292
Description: