ebook img

Metabolome disruption of pregnant rats and their offspring resulting from repeated exposure to a PDF

21 Pages·2017·4.39 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Metabolome disruption of pregnant rats and their offspring resulting from repeated exposure to a

RESEARCHARTICLE Metabolome disruption of pregnant rats and their offspring resulting from repeated exposure to a pesticide mixture representative of environmental contamination in Brittany NathalieBonvallot1,2*,Ce´cileCanlet2,FlorenceBlas-Y-Estrada2,RoselyneGautier2, a1111111111 MarieTremblay-Franco2,SylvieChevolleau2,SylvaineCordier1,Jean-PierreCravedi2 a1111111111 a1111111111 1 UnivRennes,EHESP,Inserm,Irset(Institutderechercheensante´,environnementettravail)—UMR_S 1085,Rennes,France,2 INRAUMR1331Toxalim,UniversityofToulouse,INP,ENVT,EIP,UPS, a1111111111 UMR1331,Toulouse,France a1111111111 *[email protected] Abstract OPENACCESS Citation:BonvallotN,CanletC,Blas-Y-EstradaF, Theuseofpesticidesexposeshumanstonumerousharmfulmolecules.Exposureinearly-life GautierR,Tremblay-FrancoM,ChevolleauS,etal. mayberesponsibleforadverseeffectsinlaterlife.Thisstudyaimedtoassessthemetabolic (2018)Metabolomedisruptionofpregnantrats modificationsinducedinpregnantratsandtheiroffspringbyapesticidemixturerepresentative andtheiroffspringresultingfromrepeated exposuretoapesticidemixturerepresentativeof ofhumanexposure.Tenpregnantratswereexposedtoamixtureofeightpesticides:aceto- environmentalcontaminationinBrittany.PLoS chlor(246μg/kgbw/d)+bromoxynil(12μg/kgbw/d)+carbofuran(22.5μg/kgbw/d)+chlor- ONE13(6):e0198448.https://doi.org/10.1371/ mequat(35μg/kgbw/d)+ethephon(22.5μg/kgbw/d)+fenpropimorph(15.5μg/kgbw/d)+ journal.pone.0198448 glyphosate(12μg/kgbw/d)+imidacloprid(12.5μg/kgbw/d)representingthemainenviron- Editor:PieterSpanoghe,UniversiteitGent, mentalpesticideexposureinBrittany(France)in2004.Anothergroupof10pregnantrats BELGIUM servedascontrols.Femaleswerefedadlibitumfromearlypregnancy,whichisfromgesta- Received:September18,2017 tionalday(GD)4toGD21.UrinesampleswerecollectedatGD15.Attheendoftheexpo- Accepted:May18,2018 sure,mothersandpupswereeuthanizedandblood,liver,andbrainsamplescollected.1H Published:June20,2018 NMR-basedmetabolomicsandGC-FIDanalyseswereperformedandPCAandPLS-DA usedtodiscriminatebetweencontrolandexposedgroups.Metabolitesforwhichthelevels Copyright:©2018Bonvallotetal.Thisisanopen accessarticledistributedunderthetermsofthe weresignificantlymodifiedwerethenidentifiedusingtheKruskal-Wallistest,andp-values CreativeCommonsAttributionLicense,which wereadjustedformultipletestingcorrectionusingtheFalseDiscoveryRate.Themetabolo- permitsunrestricteduse,distribution,and micsanalysisrevealedmanydifferencesbetweendamsofthetwogroups,especiallyinthe reproductioninanymedium,providedtheoriginal plasma,liverandbrain.ThemodifiedmetabolitesareinvolvedinTCAcycle,energyproduc- authorandsourcearecredited. tionandstorage,lipidandcarbohydratemetabolism,andamino-acidmetabolism.These DataAvailabilityStatement:Allrelevantdataare modificationssuggestthatthepesticidemixturemayinduceoxidativestressassociatedwith withinthepaperanditsSupportingInformation files. mitochondrialdysfunctionandtheimpairmentofglucoseandlipidmetabolism.Theseobser- vationsmayreflectliverdysfunctionwithincreasedrelativeliverweightandtotallipidcontent. Funding:Thisworkwassupportedbygrantsfrom theEHESP-SchoolofPublicHealth(Young Similarfindingswereobservedforglucoseandenergymetabolismintheliveroftheoffspring, Researchers)andtheFrenchMinistryof andoxidativestresswasalsosuggestedinthebrainsofmaleoffspring. EnvironmentinthenationalprogramGrenellede l’EnvironnementProgrammeLOLF189Funding (EXPiOmark). PLOSONE|https://doi.org/10.1371/journal.pone.0198448 June20,2018 1/21 Metabolomicsandpesticideexposure Competinginterests:Theauthorshavedeclared thatnocompetinginterestsexist. Introduction Pesticidesarecommonlyusedinagriculture.Theirapplicationcanleadtoenvironmentalcon- tamination.Althoughhumanexposureisnotfullyelucidated,numerousstudieshaveshown thatproximitytoareasofagriculturalpesticideusemaybeasourceofpesticideexposure,in additiontodomesticordietarysources[1–5].Exposuretopesticidesishazardoustohuman health,particularlyinoccupationalsituations,inwhichincreasedrisksofcancer,developmen- taldefects,orneurologicproblemshavebeenobserved[6,7].Suchconclusionsaremorediffi- culttodrawforlow-doseenvironmentalexposuretopesticides.However,fetusesandinfants areparticularlysusceptibletotoxicants.Ananalysisofpublishedstudiesshowsthatprenatal exposuretosomepesticidesmayinducemalformations(herbicides)[8–10],affectfetalgrowth (herbicides,organophosphorous)[11–13],orareassociatedtobehavioraldisorders(organo- phosorous,pyrethroids)[14–23]. Metabolomicsisapromisingapproachtostudytheassociationsbetweenenvironmental exposuresandhealtheffects.Overthelastfewyears,manytoxicologicalstudieshavedemon- stratedthatmetabolomicsisapowerfulmethodfordetectingchangesinthemetabolomeof individualsexposedtopesticides.Arecentcomprehensivereviewshowedthatexposuretopes- ticidesmixturesmayinducemetabolicmodificationspotentiallylinkedwithphysiopathological disturbances[24].Endosulfan,atrazine,andchlorpyrifosincombinationcanpotentiallyinduce changesinamino-acidmetabolism,thecitratecycle,theureacycle,andglucosemetabolism throughanoxidativedisturbanceinmice[25,26].Exposuretoorganophosphorusmixtures (chlorpyrifosandcarbaryl,ordichlorvos,dimethoate,acephate,phorate)inducesdisturbances inenergyandlipidmetabolisminrats[27–29].Alteredlipidmetabolismhasalsobeenrecently confirmedforexposuretoorganophosphorus.:hepaticdysfunction,suchasnon-alcoholicfatty liverdisease,hasbeenobservedinratsexposedtodichlorvos+acephate+phorate+dimethoate [30].Energymetabolismhasalsobeenshowntobealteredbyexposuretopyrethroids(deltame- thrin)incombinationwithdichlorvos[31].Toxicologicalstudiesareusuallycarriedoutincon- ditionswhicharenotrepresentativeofhumanexposures,inparticularbecausetheyinvestigate simplemixturesathighdoses.Onlyonestudyhasbeendesignedtoinvestigatethemetabolic effectsofcomplexmixturesofpesticidesatlowerdoses:Mehrietal.investigatedtheeffectin miceofamixtureoflow-doses(calculatedfromtheirrespectiveacceptabledailyintakesdefined bythejointFAO/WHOmeetingonpesticideresiduesandextrapolatedtothemiceonthebasis ofmeanbodyweightvalues)ofsixpesticidesfrequentlyfoundinfruitsandvegetablesgrownin Franceandshowedametabolicsignaturelinkedtooxidativestressandglucoseregulation[32]. Morethan60%ofthesurfaceareainBrittany(France)isdevotedtoagriculturalactivities, with50%devotedtocerealsandcorn.Inthe2000’s,almostalllandinthisregionreceivedat leastfourdifferenttreatmentstocontroltheproliferationofannualgrasses,fungi,andinsects. In2004,acetochlor(chloroacetanilideherbicide),carbofuran(carbamateinsecticide),chlor- mequat(quaternaryammoniumplantgrowthregulator),ethephon(organophosphorusplant growthregulator),fenpropimorph(morpholinefungicide),imidacloprid(neonicotinoid insecticide),glyphosate(glycinederivativeherbicide),andbromoxynil(nitrileherbicide)con- stitutedalmost90%ofthepesticidesusedoncerealsandcorn.Apreviousstudybasedon83 pregnantwomenfromthePELAGIEcohortshowedchangesintheurinarymetabolomeof womenlivingintownswithhighagriculturalcerealactivities[33].Thesechangesarepoten- tiallyrelatedtoenergymetabolism.Theobjectiveofthepresentstudywastoexaminethe effectsinpregnantratsofarealisticpesticidemixturebasedonsubstancesappliedtocropsin Brittanytosupportthesepreviousobservations. PLOSONE|https://doi.org/10.1371/journal.pone.0198448 June20,2018 2/21 Metabolomicsandpesticideexposure Materialandmethods Chemicalsandexposure Methanol(purity(cid:21)99.8)waspurchasedfromMerck(Darmstadt,Germany).Ultrapurewater wasproducedwithaMilli-Qsystem(Millipore,SaintQuentinenYvelines,France)andwas usedforpesticidedissolution.Theeighthigh-purity((cid:21)98%)pesticides(pestanal1analytical standards)acetochlor(CAS34256-82-1,BatchSZB9314XV),bromoxynil(CAS1689-84-5, BatchSZB8021XV),carbofuran(CAS1563-66-2,BatchSZB9064XV),chlormequat(CAS999- 81-5,BatchSZB8248XV),ethephon(CAS16672-87-0,BatchSZBB021XV),fenpropimorph (CAS67564-91-4,BatchSZB9243XV),glyphosate(CAS1071-83-6,BatchSZB9320XV),and imidacloprid(CAS138261-41-3,BatchSZB9112XV),werepurchasedfromFluka,Sigma Aldrich(LesUlis,France).Theywereincorporatedintotheratdiet,atanominaldosecorre- spondingtothesameproportionastheirrespectiveenvironmentalexposurebasedonFrench usein2004(https://www.airbreizh.asso.fr/),toreachatotaldoseof447μg/kgbw/d,whichcor- respondstothesumoftheirrespectiveacceptabledailyintake.Theoreticalandingesteddoses calculatedfromfoodconsumptionduringtheexperimentareshowninTable1. Preparationofthecontaminateddiet Commercialpowdereddietformulatedforgrowth,pregnancy,andlactation(A03,SAFE)was usedforthisstudy.Wefirstincorporatedthepesticidesintoapremixbatch,becauseofthe extremelylowquantitiesaddedtothediet,bythoroughlymixingtherequiredquantityofeach pesticidewith50gpowdereddiet.Briefly,allpesticidesweredissolvedinmethanol(10mL totalvolume),exceptglyphosate,whichwasdissolvedinwater(1mL),andbothalcoholicand aqueoussolutionswereaddedtothediet.Themixturewasthenhomogenizedfor15min usingaVirtis45Blade-typehomogenizer(Gardiner,NewYork).Theresultingmixwaskept for24hatroomtemperaturetoallowthemethanolandwatertoevaporate.Themixwasthen Table1. Ingesteddosesofpesticidesbydams(μg/kgbw/day),calculatedfromatotaldosebasedonthesumoftheacceptabledailyintake(ADI)ofeachpesticide andtheproportiontotheirlevelofenvironmentalexposureinBrittany(France). Pesticide: Theoreticaloral Dietaryintakebasedonfood ADIa(PODbusedforits Proportionofenvironmentalpesticide Name(chemicalclass) dose consumption derivation)inμg/kgbw/day exposureinBrittany(%)c Acetochlor 290 246 3.6(LOAEL:1080) 64.83 (chloroacetanilide) Bromoxynil(nitrile) 14 12.0 10(NOAEL:1000) 3.16 Carbofuran(carbamate) 27 22.5 0.15(LOAEL:30) 6.03 Chlormequat(quaternary 42 35.0 40(NOAEL:4000) 9.33 ammonium) Ethephon(organo- 27 22.5 30(NOAEL:27000) 6.03 phosphorus) Fenpropimorph(morpholine) 18 15.5 3(NOAEL:300) 4.02 Glyphosate(glycine 14 12.0 300(NOAEL:31000) 3.17 derivative) Imidacloprid(neonicotinoid) 15 12.5 60(NOAEL:3700) 3.43 aacceptabledailyintakefromEFSAandAgritox,datafromtheDecisionoftheEuropeanUnion,availableatwww.efsa.europa.euandwww.agritox.anses.fr,respectively; bPOD:pointofdeparture(NOAEL:noobservedadverseeffectlevel,orLOAEL:lowestobservedadverseeffectlevel); ctheproportionsofpesticideusedinthisstudyweredefinedfromaregistryofpesticide’semissionsachievedin2003inBrittany(France)byaregionalassociationfor airqualityhttps://www.airbreizh.asso.fr/). Thisregistrywasbasedondifferentpractice’ssurveysimplementedonthewatercatchmentscale,thephysicalchemicalcharacteristicsofthepesticides,andthe spreadingquantitiesatthesquare-kilometerscale. https://doi.org/10.1371/journal.pone.0198448.t001 PLOSONE|https://doi.org/10.1371/journal.pone.0198448 June20,2018 3/21 Metabolomicsandpesticideexposure combinedwith50gdietandputinaDangoumauball-mill(Prolabo,Fontenay-sous-Bois, France)tobereducedtoapowder.Thispremixwasstoredat4˚Cinglassflasksuntilmixing andpelletingofthediet.Thesameprocedurewasusedforthecontroldiet,exceptthatnopes- ticidewasaddedtothealcoholicandaqueoussolutions.Beforepelleting,alldietingredients andthepremixweremixedforapproximately20mininamixingbowl(Santos,AsmoSud, Toulouse,France). Animals TwentyfemaleWistarCrl:WI(Han)ratswerepurchasedfromCharlesRiverLaboratories, L’Arbresle,France.Ratswerematedthedaybeforereceivingthediet,consideredtobegesta- tionalday(GD)1.Animalswereacclimatedfortwodaysbeforeexposure.Animalsweremain- tainedundercontrolledtemperatureandlight(21˚C±2˚C,12-hourslight/darkcycle).The meanbodyweightwas212gatthebeginningoftheexperiment.Females(10perlot)werefed controlorcontaminateddietsfromGD4toGD21.Foodconsumptionandbodyweightwere measuredeverytwodays.AtGD13,eightfemalespergroupwereplacedinmetaboliccages andacclimatedfortwodaysbeforea24-hurinecollectiononGD15(theendoftheorgano- genesis).AtGD21,approximately12hbeforetheexpectedtimeofparturition,animalswere sacrificedbycervicaldislocationfollowedbyexsanguination.Bloodsamplesweretakenfrom thefacialarteryofthedams,addedtoaglassvialcontainingheparin,andplacedonicebefore centrifugationandfreezingat-20˚C.Atthesametime,thefetuseswerewithdrawnfromthe uterusofthedamsforbloodrecovery.Foreachindividual,theliver(themedianlobefor dams,andapoolofthreeentireliversfromeachlitterformaleandfemalefetuses)andthe brain(entirefordams,andapoolofthreeentirebrainsfromeachlitterformaleandfemale fetuses)wereexcised,weighed,andrapidlyfrozeninliquidnitrogen. Thestudywasconductedinaccreditedanimalcarefacilities(#C3155513)byanapprovedstaff, andanimalcarewasinaccordancewiththeguidelinesoftheEuropeanCouncilonAnimalsused inExperimentalStudies.Allexperimentalprotocolsandprocedureswereapprovedbythelocal InstitutionalAnimalCareandUseCommitteesfromINRA:"Comite´d’EthiquedePharmacologie- ToxicologiedeToulouseMidi-Pyre´ne´es"(CEEA#86/MinistryofHigherEducation,Researchand Innovation)(TOXCOM/0124/JPC,nationalnumberAPAFiS#4303_2016022912425905_V3), accordingtotheDirective2010/63/EUrecommendations. Metabolomicsanalyses Samplepreparation. Urinesamples:Afterthawingatroomtemperatureandvortexing, 500μLurinewasmixedwith200μLphosphatebuffer(pH7.39)preparedinD Otowhich 2 wasaddedsodium3-trimethylsilyl-1-[2,2,3,3,-2H ]-propionate(TSP,1mM).Thephosphate 4 bufferisusedtominimizevariationsinchemicalshiftvaluesintheacquiredNMRspectradue topHdifferences.TSPservedasachemicalshiftreference(δ0ppm)andD Oasafield-fre- 2 quencylockfortheNMRspectrometer.Eachsamplewasvortexedandcentrifugedfor10min at6,080gtoremoveanyprecipitate.Then,600μLaliquotsweretransferredtostandard5mm —NMRtubesforanalysis. Plasmasamples:Afterthawingatroomtemperatureandvortexing,200μLserumwas mixedwith500μLD O.Eachsamplewasvortexedandcentrifugedfor10minat6,080gand 2 600μLaliquotsweretransferredtostandard5mm—NMRtubesforanalysis.Liverandbrain samples:ExtractionprocedureswerederivedfromthemethoddescribedbyWatersetal.[34]. Tissuesamples:Liver(100mg)andwholebrainwerehomogenizedusingaPolytron PT2100inacetonitrile/H O(50/50,v/v)containing0.1%BHTinanice-waterbath.Homoge- 2 nateswerecentrifugedat5,000gfor10minat4˚Candthesupernatantsremovedand PLOSONE|https://doi.org/10.1371/journal.pone.0198448 June20,2018 4/21 Metabolomicsandpesticideexposure lyophilizedbeforebeingreconstitutedin600μLD Ocontaining0.25mMTSP(asachemical 2 shiftreferenceat0ppm). 1HNMRspectraacquisition. All1HNMRspectrawereacquiredat300KonaBruker AvanceDRX-600,operatingat600.13MHz(BrukerBiospin,Wissembourg,Germany), equippedwithanautosamplerandaninverse1H-13C-15Ncryoprobe.Forurinesamples,1H NMRspectrawereacquiredusingastandardpulsesequenceNOESYtosuppresswaterreso- nance.Arelaxationdelayof2sandmixingtimeof150mswereusedand256freeinduction decays(FIDs)werecollectedinto32kdatapointsusingaspectralwidthof20ppmwithan acquisitiontimeof1.36s.1HNMRspectrawereacquiredusingtheCarr-Purcell-Meiboom- Gill(CPMG)spin-echopulsesequencewithpre-saturation,withatotalspin-echodelay(2nt) of240mstoattenuatebroadsignalsfromproteinsandlipoproteins.Atotalof128transients werecollectedinto32kdatapointsusingaspectralwidthof20ppm,arelaxationdelayof2s andanacquisitiontimeof1.36s. 1HNMRdatapreprocessing. Allfreeinductiondecayswerethenmultipliedbyanexpo- nentialfunctionwithalinebroadeningfactorof0.3HzpriortoFouriertransformation.All spectrawerereferencedtothechemicalshiftofTSP(δ0.00).AllNMRspectraweremanually phase-andbaseline-correctedusingTopspin(V2.1,BrukerBiospin,Germany)andACD/NMR Processor(AcademicEdition,ACDLabs,Canada).Thespectralregionscontainingresidual water,solvents,andurearesonanceswereremovedandthespectradigitizedto469to766buck- ets(accordingtothebiologicalmedia)correspondingto0.01ppmintervalsusingtheAMIX softwarepackage(V3.9.11,BrukerBiospin,Germany).Eachintegratedregionwasdividedby thetotalspectralintensitytonormalizevalues.Thispartiallyremovesconcentrationdifferences betweensamples. GC-FIDanalysisoffattyacidmethylestersintheliver. Tissuesampleswerehomoge- nizedusingtheFastprepsystem(40s)inmethanol/water(83/17v/v).Dichloromethane(2 mL)wasaddedtothehomogenatesand,aftervortexing,adichloromethane/water(50/50v/v) mixture(4mL)wasadded.After15minat4˚C,theextractswerecentrifuged(2,870gfor15 minat4˚C),andthelowerlipophilicphaserecoveredandevaporatedtodrynessunderanitro- genstream.Theliversamplesfromadultfemalesandalloffspringwereretakenby5mLand1 mLofdichloromethane,respectively.Analiquotcorrespondingto5mgoftissuewassampled and5μgTG17(glyceryltriheptadecanoate,SigmaAldrich,lesUlis,France)addedasinternal standardtoverifythecompletenessofhydrolysis.AfterhydrolysisinKOH-methanol(0.5M) for30minat56˚C,FAsweretransmethylatedwith1mLBF -methanol,10%wt(60minat 3 80˚C).Oncecooleddown,1mLMilli-Qwaterand2mLheptanewasaddedtothemethylated FAsandthemixturemanuallyshaken.Aftercentrifugation(500g,5min),theupperlayer containingFAmethylesters(FAMEs)wastransferredtoaglasstubeandevaporatedtodry- ness.Heptane(200μL)wasthenaddedandthesampletransferredtoavial.FAMEswereana- lyzedonaTRACE1310gaschromatograph(ThermoScientific,LesUlis,France)equipped withasplit-splitlessinjectoroperatedinthesplitlessmodeandaflame-ionizationdetector. FAMEswereseparatedonaFAMEWAXTMcolumn(30m,0.32mminternaldiameter, 0.25μmfilmthickness)fromRestek(Lisses,France)usingheliumascarriergasataconstant flowof1.0mL.min-1.Theinjectortemperaturewassetat225˚Candtheoventemperaturewas programmedasfollows:1minisothermalstepat130˚C,from130˚Cto245˚Cat2˚C.min-1 andthen8minat245˚C.FAMEswereidentifiedbycomparingsampleretentiontimesto thoseofcommercialstandardmixtures(MenhadenoilandFoodIndustryFAMEMix,Restek) usingXcalibur2.2software(ThermoScientific). Discriminantanalysisaccordingtoexposuregroups. TheNMRspectralandGC-FID dataintegrationwereimportedintotheSIMCA-P+softwarepackage(version12.0,Umetrics) formultivariatestatisticalanalysis.Principalcomponentanalyses(PCA)wasperformedto PLOSONE|https://doi.org/10.1371/journal.pone.0198448 June20,2018 5/21 Metabolomicsandpesticideexposure separatetheexposedandcontrolgroupsandremoveoutliers,ifnecessary.ThePLS-DA methodwasthenappliedtoidentifypotentialmetabolitescorrespondingtothebucketswith variableimportanceintheprojection(VIP)above1.Cross-validationwasusedtodetermine thenumberoflinearcombinationstobeincludedinthePLS-DAmodel.Thequalityofthe modelwasgivenbythetwoparameters,R2Y(proportionofexplainedvariance)andQ2Y (predictiveability).TheQ2valuewasevaluatedusingaseven-foldcross-validation.Apermu- tationtest(200iterations)wasconductedforeachPLS-DAmodeltotesttheirvalidity.Ifno separationwasobtainedwithpreliminaryPCAorPLS-DA,weusedorthogonalsignalcorrec- tion(OSC)filteringtodecreasevariabilityintheX-matrix(spectraldata)notcorrelatedwith theexposuregroups[35,36],whichincludeconfoundingfactorssuchasphysiological,experi- mental,andinstrumentalfactors. Anon-parametricKruskal-Wallistestwithacriticalp-valueof0.05wasfurtherusedto determinewhethertherewasasignificantdifferencebetweenthetwogroupsforeachmetabo- liteobtainedfromthePLS-DAmodels.P-valueswereadjustedformultipletestingcorrection usingtheFalseDiscoveryRate[37].ThistestwasconductedusingRsoftware(version2.12.1). Statisticallysignificantchangesbetweenthelipidcontentofliverandbrainfromtheexposed andcontrolgroupswerealsoassessedusinganon-parametricKruskal-Wallistest(n=6to10 pergroup,p-value<0.05). Metaboliteidentification. Spectralassignmentswerebasedonmatching1DNMRdata toreferencespectrainahome-madereferencedatabase,aswellaswithotherdatabases(http:// www.bmrb.wisc.edu/metabolomics/;http://www.hmdb.ca/),andreportsintheliterature. Results CharacteristicsoftheanimalsarepresentedinTable2.Ourresultsdonotshowanysignificant differencesinbodyweight,bodyweightgain,orabsoluteliverweightinexposeddamsrelative tocontrols.Foodconsumptionwasslightlybutsignificantlyincreasedinexposeddamsin comparisontocontroldams,butthedifferencedisappearedafteradjustingforbodyweight. Therelativeliverweightsofexposeddamswereslightlybutsignificantlyreducedthanthoseof thecontroldams,andthiswasassociatedwithasignificantincreaseinlipidmasspergramof liver.Thebrainsofexposeddamsweresignificantlyheavierthanthoseoftheexposedgroup (p<0.05),butthedifferencedisappearedafteradjustingforbodyweight.Damsexposedto pesticideshadfewerfemalefetusesthannon-exposeddams,butthenumberofoffspringper litterwasthesame.Furthermore,themeanliverweightofmalefetusesintheexposedgroup wassignificantlyhigherthanthatofthoseofthenon-exposedgroup(p<0.005),whereasthe meanbrainweightoffetusesofbothgenderswashigher(p<0.01formales,p<0.05for females).Thissuggestspossiblegender-specificsensitivitytothispesticidemixture,withmales possiblybeingmoresensitivethanfemales. Comparisonofmetabolicprofilesofexposeddamsversuscontroldams Wecomparedthe1HNMRspectraofurine(atGD15),plasma(atGD21),andliverandbrain extractsofexposedandcontroldams(rawdataareavailableinS1–S4Tables):thefingerprints resultingfromdietaryexposuretothepesticidemixturewerecomprisedof35metabolites. Urinarymetabolicprofiles. ThefirstPCAofurinemetabolitesrevealedachemicalshift forcitrate,possiblyduetoadifferenturinarypHbetweenindividuals,despitetheadditionof phosphatebuffer.Afterexcludingthespectralregionscorrespondingtothesignalsofthecit- rateprotons(δ2.51–2.58ppmandδ2.65–2.73ppm),neitherpreliminaryPCAnorPLS-DA separatedtheexposedgroupfromthecontrols.AnOSCfilteredPLS-DAmodelallowedusto identifytwometabolites(hippurate,citrulline)forwhichsignificantdifferencesinthesignal PLOSONE|https://doi.org/10.1371/journal.pone.0198448 June20,2018 6/21 Metabolomicsandpesticideexposure Table2. Foodconsumptionandbodyandorganweightsfordamsandoffspring. Parameters Controlgroup Exposedgroup Dams (n=10) (n=10) Foodconsumption(g) 294.3±18.3a 317.2±31.8 Relativefoodconsumption/bodyweight(%) 1.43±0.10 1.47±0.13 Bodyweightgain(g) 97.5±6.3 95.5±13.3 BodyweightatGD21(g) 302.7±12.6 312.2±22.5 Absoluteliverweight(g) 9.49±0.82 8.98±0.98 Relativeliver/bodyweight(%) 3.13±0.19 2.87±0.19(cid:3)b Lipidmasspergramofliver(mg/g) 26.20±4.52 33.77±5.50(cid:3)(cid:3) Brainweight(g) 1.44±0.18 1.57±0.07(cid:3) Relativebrain/bodyweight(%) 0.48±0.06 0.50±0.03 Offspring Numberofoffspringperlitter 11.39±1.6 10.28±1.6 Numberofmales 5.71±1.03 5.47±2.13 Numberoffemales 5.53±1.34 4.20±1.51(cid:3) Liverweightc(g) Males 0.45±0.08 0.58±0.10(cid:3)(cid:3)(cid:3) Females 0.56±0.11 0.60±0.08 Lipidmasspergramofliver(mg/g) Males 20.09±3.92 16.1±3.56(cid:3) Females 15.73±3.42 15.18±2.17 Brainweightc(g) Males 0.36±0.05 0.42±0.04(cid:3)(cid:3) Females 0.39±0.02 0.41±0.03(cid:3) aDatashownasthemean±SD. bComparisonwiththeKruskalWallistest: (cid:3)p<0.05; (cid:3)(cid:3)p<0.01; (cid:3)(cid:3)(cid:3)p<0.005. cpoolofthreeindividualsperlitter. https://doi.org/10.1371/journal.pone.0198448.t002 wereconfirmedusingtheKruskal-Wallistest.Differenceswerealsoshownforthreeother metabolites(creatine,phenylacetylglycineandtaurine)withoutstatisticalsignificance (0.05<p<0.08).CharacteristicsofthemodellingarepresentedintheTable3andscoreplots intheFig1A.Additionally,aspecificanalysisofthespectralregionscorrespondingtothecit- rateusingtheKruskal-Wallistestshowsastatisticalsignificantincreaseintheexposedgroup comparedtothecontrolgroup(p=0,001). Plasmametabolicprofiles. PreliminaryPCArevealedacceptableseparation,especially onthesecondcomponent(Fig1B).Ratn˚23wasmoredistantthantheotherindividuals, becauseofincreasedlipidandlactatecontent.PLS-DAmodellingallowedustoidentify11sig- nificantlyalteredmetabolitesignalsfortheexposedgrouprelativetocontrols(higherforlip- ids,aceto-acetate,glutamateanddimethylamineandlowerforcreatine,acetate,alanine, glutamine,isoleucine,lysineandvaline),suggestingadisturbanceofenergy,amino-acid,and lipidmetabolism(Tables3and4). Livermetabolicprofiles. Aqueousextract:Afterexcludingtwoindividualswithahigh contentof3-hydroxybutyrateandhighlydilutedspectra,thePCAshowedverygoodsepara- tiononthefirstcomponentthatexplained44%ofthetotalvariabilitybetweengroups(Fig PLOSONE|https://doi.org/10.1371/journal.pone.0198448 June20,2018 7/21 Metabolomicsandpesticideexposure Table3. Resultsofthepartialleastsquaremodellingofmetabolicprofilesofdams(urine,plasma,aqueousliverandbraintissueextracts,andlipidiclivertissue extracts). Samples Numberof Modelused Numberof R2 Q2 Interceptsb NumberofVIPC> rats LVa 1 Urine 15 OSC-paretoscaled+PLS-DA(mean 2 94.8% 0.613 R2=(0.0,0.665)Q2=(0.0, 163 centered)d -0.249) Plasma 20 PLS-DA(paretoscaled) 3 80.6% 0.413 R2=(0.0,-0.472)Q2=(0.0, 155 -0.232) Liver–aqueous 14 PLS-DA(paretoscaled)e 1 81.2% 0.704 R2=(0.0,-0.277)Q2=(0.0, 87 -0.222) Liver–Fatty 20 OSC-unitscaled+PLS-DA(unitscaled) 1 93.3% 0.835 R2=(0.0,0.291)Q2=(0.0, 7 acids -0.166) Brain–aqueous 19 PLS-DA(paretoscaled)f 2 86.5% 0.552 R2=(0.0,0.514)Q2=(0.0, 165 -0.231) aLV:latentvariables. b200permutations. cVIP:variableimportanceinprojection. dexclusionofthecitrateregion(shift)andratn˚G2-18(outlierinapreliminaryPCA). eexclusionofratsn˚G2-17andG0Mbis. fexclusionofratn˚G2-Mter. https://doi.org/10.1371/journal.pone.0198448.t003 1C).ThefirstcomponentofPLS-DAmodelexplained81.2%ofthedifference(Table3).There wasasignificantlyhighersignalforglucoseandglycerophosphocholinefortheexposedgroup andtoalesserextent(tendencywithoutsignificance),forcreatine,acetateand3-hydroxybuty- rate.Aconcomitantdecreaseinthesignalforglutamate,glutamine,glycogen,glycerol,serine, dimethylglycine,glycine,andtaurinesuggestsanimpactonenergy,glucose,andamino-acid metabolismandpotentialoxidativestress(Table4). Lipidfraction:Weundertookspecificanalysesofhepaticfattyacidsbecauseofthesig- nificantdecreaseinrelativeliverweightandincreaseinlipidcontentintheliversof exposeddams(seeTable2)andbecauseoftherelevanceoftheliverasatargetorganfor pesticides[38].Therewasnostatisticallysignificantdifferenceinthesaturated/unsatu- ratedfattyacidratiobetweentheexposedgroupandcontrols.NeitherPCAnorPLS-DA separatedtheexposedandcontrolgroups.AnOSCfilteredPLS-DAmodelallowedusto identifysevenfattyacidsforwhichsignificantdifferencesinthesignalwereconfirmed usingaKruskal-Wallistest.ThefirstcomponentofthePLS-DAmodelexplained93.3%of thevariability(Table3).Thesignalsforunsaturatedfattyacids(PUFAsC20:2ω6,C20:3ω6, C20:4ω6;C22:4ω6,C22:5ω3,andMUFAC18:1ω7)andonesaturatedfattyacid(C18:0) werehigherfortheexposedgroup(Table5),whereasthoseforC14:0,C16:0,C16:1ω7, C18:1ω9,C20:1ω9,C18:2ω6,C18:3ω6,C18:3ω3,C20:3ω9,C20:5ω3,C22:5ω6,C22:6ω3 wereunaffected. Brainmetabolicprofiles(aqueousextracts). Afterexcludingoneoutlier(withavery concentratedspectrumwhichcontainsmethanol,probablyduetopartialevaporation),the PCAproperlyseparatedtheexposedgroupfromthecontrols,especiallyonthefirstcompo- nent(Fig1D).PLS-DAmodellingfollowedbyaKruskal-Wallistestallowedustoidentifysig- nificantlyhighersignalsforN-acetylaspartate,lysine,inosine,oxidizedglutathioneand ethanolamineinbrain,andlowersignalsforATP,ADP/AMP,lipids,glutamine,aspartate, succinate,lactate,serine,glycerophosphocholine,phosphocholine,anduridine.Non-signifi- cantincreasesincreatineandtaurinewerealsoobserved(Table4).Thesedifferencescouldbe linkedtooxidativestress. PLOSONE|https://doi.org/10.1371/journal.pone.0198448 June20,2018 8/21 Metabolomicsandpesticideexposure Fig1.Two-dimensionalPLS-DAandPCAscoresplotofpregnantratsamplesintegrated1HNMRspectra.1a:GD15urinesamples(PLS-DA,A=2,R2=94.8%, Q2=0.613);1b:GD21plasmasamples(PCA,A=4,R2=72.5%);1c:GD21liveraqueousextractsamples(PCA,A=3,R2=61.6%);1d:GD21brainaqueousextract samples(PCA,A=4,R2=72.8%).Eachdotrepresentsanobservation(animal),projectedontofirst(horizontalaxis)andsecond(verticalaxis)PLS-DAorPCAvariables. ControlgroupisshownwithblacksquaresandthegroupexposedtoeightpesticideswidelyusedinBrittany(France)in2004(acetochlor,bromoxynil,carbofuran, chlormequat,ethephon,fenpropimorph,glyphosate,imidacloprid)isshownwithredcircles.Theblackellipsedeterminesthe95%confidenceinterval,whichisdrawn usingHotelling’sT2statistic. https://doi.org/10.1371/journal.pone.0198448.g001 ComparisonofthemetabolicprofilesatGD21betweenexposedand controlgroupsofoffspring Plasmametabolicprofiles. Onlymalebloodprofileswereanalyzedduetoaninsufficient quantityofbloodcollectedfromthefemalefetuses.EachNMRspectrumwasacquiredfrom pooledbloodfromthreemalesperlitter.RawdataarepresentedasbuckettableinS5Table. ThepreliminaryPCA(mean-centereddata)revealedgoodseparation,especiallyonthesecond component(Fig2A).PLS-DAmodelling(characteristicsgiveninTable6)allowedtoidentify significantlowerplasmalevelofglutamateandcholine,andahigherplasmaleveloflipidsin exposedmalefetusesthancontrols(Table7). Livermetabolicprofiles. Aqueousextract:malesandfemaleswereanalyzedseparately. RawdataarepresentedasbuckettableinS6andS7Tables.Formales,thepreliminaryPCA showedthreeoutliers.Afterexcludingthem,thePCAcorrectlyseparatetheexposedandcon- trolgroups(Fig2B).Wefound13metaboliteswithalteredsignalsbetweenthegroupsafter PLS-DAmodeling(Tables6and7),includingsignificantlowersignalsforcreatine/creatinine, glutamate,aspartate,glycogen,glycerol,leucine,valine,andglutathione,andhighersignalsfor glucose,lysine(withacetate),taurine,andglycerophosphocholineforthemalefetusesof PLOSONE|https://doi.org/10.1371/journal.pone.0198448 June20,2018 9/21 Metabolomicsandpesticideexposure Table4. Plasma,liverandbrainmetabolitelevelsthatweresignificantlydifferentbetweendamsfromtheexposedandcontrolgroups. Plasma Liveraqueous Brainaqueous Biologicalrole Hippurate Gutmicrobialmetabolism? Citrulline Ureacycle Creatine & %c %a Amino-acidsynthesis,storageenergy(phosphocreatine) Phenylacetylglycine Minormetabolitesoffattyacids Citrate TCAcycle Succinate &b TCAcycle ATP & Energysource ADP/AMP & Energysource Glycerol & Lipidcomponent,convertedtoglucoseforenergyproduction Glycogen & Energystorage Glucose % Energysource Lactate & Energymetabolism Alanine & Energysource,glucosemetabolismregulator Glutamate % &b Neoglucogenesis,excitatoryneurotransmitter Glutamine & & & Non-essentialamino-acid,roleinTCAcycle Valine & Essentialamino-acidinvolvedinstress,energyandmusclemetabolism,roleincarbohydrate synthesis Acetate(withlysine) & %c Lipidandcarbohydratemetabolism Lipids % & Lipidmetabolism Aceto-acetate % Lipidmetabolism,cholesterolsynthesis 3-hydroxybutyrate %c Lipidmetabolism.Energysource Isoleucine & ““ Lysine(withacetate) & % Essentialamino-acidinvolvedinstress,precursorofacetyl-coA Serine & & Non-essentialamino-acidderivedfromglycine Dimethylamine % Gutmicrobialmetabolismofcholine,hostco-metabolism Dimethylgylcine & Byproductofhomocysteineandglycinemetabolism Inosine % Purinemetabolism Aspartate & Non-essentialamino-acidproducedfromglutamate,neurotransmitter. N-acetylaspartate % Neuronalosmolyte,lipidsynthesis,derivedfromaspartateinbrain Oxidizedgluthatione % Anti-oxidant Glycine & Osmoprotector,defensemechanisms Taurine & %c Membranesstabilizerinbrain,antioxidant,osmolyte Glycero- % & Membranestabilizer,osmolyte phosphocholine Phosphocholine & Membranesstabilizer,osmolyte Ethanolamine % Membranephospholipidsynthesis Uridine & Nucleoside,synthesisofRNAmembrane,regulationofphysiologicalprocesses awithcreatinine. bclosetothesignalofglutamine. ctendencybutwithoutstatisticalsignificance(0.05<p<0.08). https://doi.org/10.1371/journal.pone.0198448.t004 exposeddams.Alaninewasalsodecreasedbutinanon-significantway.Thissuggestsamodi- ficationinglucosemetabolism,potentiallyassociatedwithmitochondrialdysfunction.Oxida- tivestressmayalsobepossibleforthesechanges.Forfemales,theresultswerelessinformative, buttherewasaslightseparationbyPCA(Fig2C)andthePLS-DAmodelexplainedmorethan 85%ofthevariabilitybetweengroups(withalowerQ2thanformales,Table7).Thesignals foronlyeightmetabolitesweredifferentbetweengroups,includingdecreasesinglycogen, PLOSONE|https://doi.org/10.1371/journal.pone.0198448 June20,2018 10/21

Description:
modifications induced in pregnant rats and their offspring by a pesticide Ten pregnant rats were exposed to a mixture of eight pesticides: aceto- Al-Eryani L, Wahlang B, Falkner KC, Guardiola JJ, Clair HB, Prough RA et al.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.