ebook img

Mechanics of Materials - Formulas and Problems: Engineering Mechanics 2 PDF

219 Pages·2017·3.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mechanics of Materials - Formulas and Problems: Engineering Mechanics 2

Dietmar Gross · Wolfgang Ehlers Peter Wriggers · Jörg Schröder Ralf Müller Mechanics of Materials – Formulas and Problems Engineering Mechanics 2 123 – Mechanics of Materials Formulas and Problems Dietmar Gross Wolfgang Ehlers (cid:129) ö Peter Wriggers Jörg Schr der (cid:129) ü Ralf M ller Mechanics of – Materials Formulas and Problems Engineering Mechanics 2 123 Dietmar Gross Jörg Schröder Division of Solid Mechanics Institute of Mechanics TU Darmstadt Universität Duisburg-Essen Darmstadt Essen Germany Germany WolfgangEhlers Ralf Müller Institute of Applied Mechanics Institute of Applied Mechanics Universität Stuttgart TU Kaiserslautern Stuttgart Kaiserslautern Germany Germany PeterWriggers Institute of Continuum Mechanics LeibnizUniversität Hannover Hannover Germany ISBN978-3-662-53879-1 ISBN978-3-662-53880-7 (eBook) DOI 10.1007/978-3-662-53880-7 LibraryofCongressControlNumber:2016956827 ©Springer-VerlagGmbHGermany2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation, reprinting,reuseofillustrations,recitation,broadcasting,reproductiononmicrofilms orinanyotherphysicalway,andtransmissionorinformationstorageandretrieval, electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks, etc.inthispublicationdoesnotimply,evenintheabsenceofaspecificstatement, thatsuchnamesareexemptfromtherelevantprotectivelawsandregulationsand thereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressorimplied,withrespecttothematerialcontainedhereinorforanyerrorsor omissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringer-VerlagGmbHGermany Theregisteredcompanyaddressis:HeidelbergerPlatz3,14197Berlin,Germany Preface Thiscollectionofproblemsresultsfromthedemandofstudentsforsup- plementaryproblemsandsupportinthepreparationforexaminations. With the present collection ’Engineering Mechanics 2 - Formulas and Problems,MechanicsofMaterials’ weprovidemoreadditionalexercise material. The subject ’Mechanics of Materials’ is commonly taught in these- cond course of Engineering Mechanics classes at universities. The pro- blemsanalyzedwithinthesecoursesuseequilibriumconditionsandki- nematicrelationsinconjunctionwithconstitutiverelations.Aswewant concentrate more on basic concepts and solution procedures the focus liesonlinearelasticmaterialbehaviorandthesmallstrainregime.Ho- wever,thiscoversawiderangeofelasto-staticproblemswithrelevancy inengineeringapplications.Specialattentionisgiventostructuralele- ments like bars, beams and shafts as well as plane stress and strain situations. Following the warning in the first collection, we would like to make thereaderaware that purereading and tryingtocomprehend thepre- sentedsolutionswill notprovideadeeperunderstandingofmechanics. Neither does it improve the problem solving skills. Using this collec- tion wisely, one has to try to solve the problems independently. The proposed solution should only be considered when experiencing major problems in solving an exercise. Obviously this collection cannot substitute a full-scale textbook. If notfamiliarwiththeformulae,explanations,ortechnicaltermstherea- der has to consider his or her course material or additional textbooks on mechanics of materials. An incomplete list is provided on page IX. Darmstadt, Hannover,Stuttgart, Essen and D.Gross Kaiserslautern, Summer2016 P.Wriggers W.Ehlers J.Schr¨oder R.M¨uller Table of Contents Literature,Notation.................................................. IX 1 Stress,Stain,Hooke’sLaw.......................................... 1 2 TensionandCompressioninBars................................. 29 3 BendingofBeams..................................................... 57 4 Torsion................................................................... 111 5 EnergyMethods....................................................... 143 6 BucklingofBars....................................................... 181 7 Hydrostatics............................................................ 195 Literature Textbooks Gross, D., Hauger, W., Schr¨oder, J., Wall, W., Bonet, J., Engineering Mechanics 2: Mechanics of Materials, 1st edition, Springer 2011 Gross, D., Hauger, W., Wriggers, P., Technische Mechanik, vol 4: Hydromechanics, Elements of Advanced Mechanics, Numerical Methods (in German), 9th edition, Springer2014 Beer,F.P.,Johnston,E.R.,DeWolf,J.T.,Mazurek,D.F.,Mechanicsof Materials, 7th edition, McGraw-Hill Education 2012 Hibbeler, R.C., Mechanics of Materials, 10th edition, Pearson 2016 Geer,J.M.,Goodno,B.J.,MechanicsofMaterials,8thedition,Cengage Learning 2013 Ghavami, P., Mechanics of Materials, 1st edition, Springer2015 CollectionofProblems Schaum’s Outlines Strength of Materials, 6th edition, McGraw-Hill Education 2013 Beer,F.P.,Johnston,E.R.,DeWolf,J.T.,Mazurek,D.F.,Mechanicsof Materials, 7th edition, McGraw-Hill Education 2012 Hibbeler, R.C., Mechanics of Materials, 10th edition, Pearson 2016 Notation The following symbols are used in the solutions tothe problems: ↑: short notation for sum of all forces in the direction of the arrow equals zero. (cid:2) A: short notation for sum of all moments with reference to point A equals zero. (cid:2) short notation for it follows. 1 Chapter 1 Stress, Strain, Hooke’s Law 2 Stress 1.1 1.1 Stress,Equilibriumconditions Stressisrelatedtoforcesdistributedoverthe area of a cross section. The stressvector t is defined as dF dF dA t= , dA n where dF is the force acting on the area ele- ment dA(unit: 1 Pa = 1 N/m2). Note:Thestressvectoranditscomponentsdependontheorientation of thearea element (with its normal n). Components of the stress vector: t τ σ–normalstress(perpendiculartotheplane) σ n τ – shear stress (in plane) Sign convention:Positivestressesatapositive(negative)facepoint in positive (negative) coordinate directions. Spatial stress state: is uniquely defined by the components of the stress vectors in three mutually perpendicular sections. z Thestresscomponentsarethecomponents of thestress tensor τzxσz τzy ⎛ ⎞ ⎜σx τxy τxz⎟ τxz τσyzy σ=⎝τyx σy τyz⎠ σx τxy τyx τzx τzy σz x y Equilibrium of moments yieldsthe following relations τxy =τyx, τxz =τzx, τyz =τzy . Hencethestresstensorisasymmetrictensorofsecond order:τij =τji. Planestressstate 3 Plane stress state: is uniquely defined σy by the stress components of two mutual- τyx ly perpendicular sections. The stress com- ponents in the third direction (here z- σx τxy direction) vanish (σz =τyz =τxz =0) (cid:8) (cid:9) τxy σx σ= σx τxy . y τyx τxy σy σy x Coordinate transformation τxy=τyx y σξ=σx+2 σy + σx−2 σy cos2ϕ+τxysin2ϕ, σx τξη σξ ξ ση=σx+σy − σx−σy cos2ϕ−τxysin2ϕ, τxy ϕ 2 2 τξη=−σx−σy sin2ϕ+τxycos2ϕ. η ϕ 2 τyx x σy Principal stresses (cid:10)(cid:11) (cid:12) σ2 σ1,2 = σx+2 σy ± σx−2 σy 2+τx2y σ1 ∗ 2τxy tan2ϕ = σx−σy σ1 y ϕ∗1 ϕ∗ Note:• The shear stresses vanish σ2 2 in these directions! x • The principal directions are perpendicular to each other: τmax ϕ∗2 =ϕ∗1±π/2. σ0 σ0 Maximum shear stresses (cid:10) (cid:11) (cid:12) τmax = σx−σy 2+τx2y, ϕ∗∗ =ϕ∗±π . y σ0 σ0 2 4 τmax ϕ∗∗ In these sections the normal stresses x reach thevalue σ0=(σx+σy)/2. Invariants Iσ=σx+σy =σξ+ση =σ1+σ2 , IIσ=σxσy−τx2y =σξση−τξ2η =σ1σ2 .

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.