MECHANICS OF ADHESION AND FRICTION IN STICK INSECTS AND TREE FROGS Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von patrick hans drechsler aus Böblingen 2008 Würzburg Eingereicht am: Mitglieder der Promotionskommission: Vorsitzender: Gutachter: Dr.Walter Federle Gutachter: Dr. Jon Barnes Tag des Promotionskolloqiums: Doktorurkunde ausgehändigt am: PUBLICATIONS Some ideas and figures have appeared previously in the follow- ing publications: 2005 Drechsler, P. and Federle, W. ( ). Adhesion and friction in stick insect tarsal pads. Comparative Biochemistry and Physiol- 141 3 144 ogy, A( /Suppl.):S . 2006 Drechsler, P. and Federle, W. ( ). Biomechanics of smooth adhesive pads in insects: influence of tarsal secretion on at- tachment performance. Journal of Comparative Physiology A 192 11 1213 1222 Sensory Neural and Behavioral Physiology, ( ): – . Federle, W., Barnes, W., Baumgartner, W., Drechsler, P., and 2006 Smith, J. ( ). Wet but not slippery: boundary friction in tree frog adhesive toe pads. Journal of the Royal Society Inter- 3 10 689 697 face, ( ): – . iii CONTENTS 1 introduction 1 11 1 . Theories of adhesion and friction 111 2 . . Theories of adhesion 112 7 . . Theories of friction 113 8 . . Theories of peeling 114 10 . . Viscoelasticity 12 11 . Biology of animal attachment 121 12 . . Adhesion and locomotion 122 13 . . Animal attachment structures 13 17 . Biomechanicsofsmoothattachmentpads 131 18 . . Role of pad secretion 132 20 . . Frictional anisotropy 133 23 . . Mode of detachment 2 material and methods 27 21 27 . Study animals 211 27 . . Stick insects 212 27 . . Tree frogs 22 29 . Single pad force apparatus 23 31 . Labview control program 24 31 . Data analysis 25 32 . Friction force measurements 251 32 . . Anisotropy 252 33 . . Amount of pad secretion 253 33 . . Normal force 254 34 . . Humidity 255 34 . . Velocity 256 35 . . Static friction 257 35 . . Frictionforcemeasurementsintreefrogs 26 35 . Adhesionforcemeasurementsinstickinsects 261 36 . . Role of pad secretion 262 38 . . Mode of detachment 27 42 . Centrifuge apparatus 28 44 . Statistics 3 results 47 31 47 . Frictionforcemeasurementsinstickinsects i contents ii 311 47 . . Anisotropy 312 51 . . Role of pad secretion 313 52 . . Normal force 314 53 . . Humidity 315 54 . . Velocity 316 55 . . Static friction 32 57 . Adhesionforcemeasurementsinstickinsects 321 57 . . Role of pad secretion 322 61 . . Mode of detachment 33 81 . Frictionforcemeasurementsintreefrogs 331 . . Possiblecontributionofsurfacetension 83 forces to shear stress in tree frogs 4 discussion 87 41 87 . Frictional anisotropy 42 88 . Role of pad secretion 421 . . Role of pad secretion for attachment to 88 smooth and rough substrates 422 90 . . Roleofpadsecretionforfrictionforces 43 94 . Mode of detachment 5 summary 99 6 zusammenfassung 101 a appendix 103 a1 103 . Material and methods a11 labview 103 . . a12 matlab 106 . . a2 107 . Results a21 107 . . Adhesion single leg a22 126 . . Contacttimeandsurfaceroughness a23 127 . . Scaling of whole body forces bibliography 128 acknowledgments 145 curriculum vitae 149 erklärung 151 LIST OF FIGURES 11 Figure . ExplanatorydiagramofHertzandJKR 3 models. 12 5 Figure . ExampleofHertzandJKRcurves. 13 Figure . Explanatory diagram of wet adhesion 5 model. 14 9 Figure . Stribeck diagram. 15 10 Figure . Explanatorydiagramofpeelingmodel. 16 Figure . Models of viscoelasticity (Kelvin-Voigt 11 and Maxwell model). 17 14 Figure . Varietyofinsectadhesiveorgans. 18 Figure . Morphology of stick insect pretarsus 14 (Carausius morosus). 19 Figure . Ultrastructure of transversal section of the arolium cuticle of Carausius moro- 15 sus. 110 Figure . Scanningelectronmicroscopeimageof 16 stick insect arolium. 111 17 Figure . Morphologyoftreefrogtoepads. 112 Figure . Diagram of different amounts of secre- 20 tionpresentbetweenpadandsubstrate. 113 21 Figure . Diagram of friction forces. 114 Figure . Chainmodelshowingtheeffectofprox- imal and distal movement on peeling 22 angle. 21 28 Figure . Immobilizationofstickinsecttarsus. 22 28 Figure . Immobilization of tree frog. 23 Figure . Experimental setup for measuring ad- hesion and shear stress of insect adhe- 31 sive pads. 24 Figure . Simplified diagram of movement pat- 37 tern for consecutive pull-offs. 25 Figure . Calculation of work of adhesion using 39 peelingmodel(perpendicularpull-off). 26 Figure . Calculation of work of adhesion using 40 peelingmodelwithcircularcontactarea. 27 43 Figure . Centrifuge apparatus. iii iv List of Figures 31 Figure . Anisotropy example curves of friction, 48 areaandshearstressforadhesivepads. 32 Figure . Anisotropy of friction, area and shear 49 stressforimmobilizedadhesivepads. 33 Figure . Velocityanddirectiondependencedur- 50 inganisotropicfrictionmeasurements. 34 Figure . Shear stress measurement in single ad- 52 hesive pads of Carausius morosus 35 Figure . Influence of normal force on friction 53 force,contactareaandshearstress. 36 54 Figure . Influenceofhumidityonshearstress. 37 Figure . Singlepadfrictionforceandshearstress at four different velocities with “accu- 55 mulated” secretion. 38 2 Figure . Friction force during and min after a 56 slow sliding movement. 39 Figure . Comparison of remaining shear stress with little and accumulated secretion 57 twominutesaftermovementhadended. 310 Figure . Consecutive,alternatingpull-offsofCa- rausiusmorosusadhesivepadsfromglass 59 androughaluminiumoxidesubstrates. 311 Figure . Effect of contact time and secretion on pull-offforcesfromaroughandasmooth 60 epoxy surface. 312 Figure . Example of stick insect’s single leg de- tachment measurement with different 61 normal forces. 313 Figure . Results of stick insect’s single pad de- tachmentexperimentsanalysingthein- 63 fluenceofnormalforceandvelocity. 314 Figure . Scaling of stick insect’s single leg pull- 71 offforcesplottedagainstbodymass. 315 Figure . Scaling of stick insect’s single leg pull- off forces plotted against contact area A 72 F . 0 316 Figure . Scaling of stick insect’s single leg pull- off forces plotted against contact area A 73 F . max List of Figures v 317 Figure . Summaryofstickinsect’ssinglelegscal- ingcoefficientsusingOLSandSMAre- 74 gressions. 318 Figure . Scalingresultsofstickinsectwholebody 80 measurements(centrifugetechnique). 319 Figure . Shear stress measurement in single toe pads of Litoria caerulea (example data 85 and boxplots). 320 Figure . Exampledatasettoestimatefluidheight between frog toe pad and substratum 86 using non-linear regression. 41 Figure . “Footloose” arolium moving in proxi- 88 mal and distal directions. 42 Figure . Schematicdiagramillustratingtheadhesion- enhancing role of insect pad secretion 90 on a rough substrate. 43 95 Figure . Proposedviscoelasticdetachmentmodel. 1 labview Figure A. Flowchart diagram of control 104 program. 2 labview 105 Figure A. Frontpanelof controlprogram. 3 Figure A. Interaction plot showing the main ef- fects and two-way interactions of log transformed pull-off force versus nor- 115 malforceanddetachmentvelocity. 4 Figure A. Interaction plot showing the main ef- fects and two-way interactions of log A transformedcontactarea F versusnor- 0 116 malforceanddetachmentvelocity. 5 Figure A. Interaction plot showing the main ef- fects and two-way interactions of log A transformed contact area F versus max 116 normalforceanddetachmentvelocity. 6 Figure A. Interaction plot showing the main ef- fects and two-way interactions of log F /A transformedforcepercontactarea P F 0 versus normal force and detachment 117 velocity. 7 Figure A. Interaction plot showing the main ef- fects and two-way interactions of log 1 transformed work of adhesion WOA versus normal force and detachment 117 velocity. 8 Figure A. Interaction plot showing the main ef- fects and two-way interactions of log 2 transformedworkofadhesionWOA mean versus normal force and detachment 118 velocity. 9 Figure A. Interaction plot showing the main ef- fects and two-way interactions of log 2 transformedworkofadhesionWOA max versus normal force and detachment 118 velocity. LIST OF TABLES 11 Table . Overviewofadhesionmodelsandtheir 24 implications on scaling. 31 Table . Two-way within-subject ANOVA table testing the influence of surface rough- ness,secretionandcontacttimeaswell 58 as their interaction. 32 Table . SummaryofTwo-wayANOVAsanalysing the influence of normal force and ve- locity on dependent variables in stick insect’ssinglelegdetachmentmeasure- 62 ments. 33 Table . Scaling of stick insect’s single adhesive pads pull-off force against body mass m 65 using OLS regression. 34 Table . Scaling of stick insect’s single adhesive pads pull-off force against contact area A 66 F using OLS regression. 0 vi
Description: