ebook img

Mechanical Behaviour of Materials: Volume II: Fracture Mechanics and Damage PDF

687 Pages·2013·19.013 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mechanical Behaviour of Materials: Volume II: Fracture Mechanics and Damage

Mechanical Behaviour of Materials SOLID MECHANICS ANDITS APPLICATIONS Volume191 SeriesEditors: G.M.L.GLADWELL DepartmentofCivilEngineering UniversityofWaterloo Waterloo,Ontario,CanadaN2L3GI AimsandScopeoftheSeries The fundamental questions arising in mechanics are: Why?, How?, and How much? The aim of this series is to providelucid accountswritten by authoritative researchersgivingvisionandinsightinansweringthesequestionsonthesubjectof mechanicsasitrelatestosolids. The scope of the series covers the entire spectrum of solid mechanics. Thus it includes the foundation of mechanics; variational formulations; computational mechanics;statics,kinematicsanddynamicsofrigidandelasticbodies:vibrations of solids and structures; dynamical systems and chaos; the theories of elasticity, plasticity and viscoelasticity; composite materials; rods, beams, shells and membranes;structuralcontrolandstability;soils,rocksandgeomechanics;fracture; tribology;experimentalmechanics;biomechanicsandmachinedesign. The median level of presentation is the first year graduate student. Some texts aremonographsdefiningthecurrentstateofthefield;othersareaccessibletofinal yearundergraduates;butessentiallytheemphasisisonreadabilityandclarity. Forfurthervolumes: http://www.springer.com/series/6557 Dominique Franc¸ois • Andre´ Pineau • Andre´ Zaoui Mechanical Behaviour of Materials Volume II: Fracture Mechanics and Damage 123 Prof.Dr.DominiqueFranc¸ois Andre´Pineau E´coleCentraledeParis E´coledesMinesdeParis Paris ParisTech France CentredesMate´riauxUMRCNRS E´vryCedex Prof.Andre´Zaoui France FrenchAcade´miedesSciences AcademyofEngineering Paris Paris France France AcademyofEngineering Paris France ISSN0925-0042 ISBN978-94-007-4929-0 ISBN978-94-007-4930-6(eBook) DOI10.1007/978-94-007-4930-6 SpringerDordrechtHeidelbergNewYorkLondon LibraryofCongressControlNumber:2011944979 ©SpringerScience+BusinessMediaDordrecht2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Foreword Without repeating all the considerations included in the foreword of Volume I of Mechanical Behaviour of Materials, we simply want to stress, in view of the problemsstill present in the design of componentsand structures, the importance of a good link between material science and mechanics, more precisely between deformation mechanisms and constitutive equations. We insisted on the need to teach these aspects to graduate students, possibly even to undergraduates and to makeengineersawareofthissubject.Itiswiththesameobjectiveinmindthatwe haveundertakenwritingthepresentvolume. VolumeIofMechanicalBehaviourofMaterialshasgiventhetoolstocalculate the stress and strain fields in loaded bodies with different constitutive behaviours and to understand the physical mechanisms at work in each case. This should helpstudentsandengineersto reachsoundresultsandto findwaysforimproving materials.WithVolumeIIwenowwishtodothesamefortheavoidanceoffailures. We think that this requires a thoroughunderstandingof damage mechanisms. We thustackleinsixchaptersbrittleandductilefractureandthetransitionbetweenthe two,fatigueandcreepdamages,environmentalassistedcracking.Asthisismostly rootedinthecaseofmetallicmaterials,weincludeaseventhchaptertotreatcasesof non-metallicmaterials:ceramics, glasses, concrete,polymers,woods,composites. A complete outline on fracture mechanics precedesthese seven chapters, because thisconstitutesanunavoidabletooltostudydamagesandalsotopredictthelifeof componentsandstructures.Thisisthendevelopedforthevariouskindsoffailuresin thecorrespondingchapters.Aspecialcaseofdamageisthatduetofrictionandwear. Wefeltthatwecouldnotavoiddealingwiththeseverydetrimentalphenomena.A ratherdifferentkindofpresentationisadoptedinthechapterdealingwiththem,as it was needed first to give results of contact mechanics and we could not expand too much on the mechanisms. The extent of the various chapters is not the same according to the subjects. For instance, in the case of fatigue, object of so many researchesandbooks,we sticktotheessential. Thechaptersonbrittleandductile fractureandoncreeparemoreelaborate,asupdatingknowledgeisrequired. As forVolume I, this re-editionis rootedonthe Klu¨weredition of Mechanical Behaviour of Materials, which owes much to the translation of “Comportement v vi Foreword me´canique des mate´riaux” by Jack Howlett whose work was essential. We have now added a great deal of up-to-date material and we hope that our six-hand playing,notwithstandingourinabilitytoplaythepiano(therearesix-handscores), haselectronicallyproduced(amanuscriptwouldhaverequiredthreehandsonly)a readableandoriginalcompendiumofmaterialsscienceandmechanics.Hopefully, let students, professors and engineers enjoy it. This volume could not have been completed without the help and precious contributions of Jacques Verdu, Lucien Laiarinandrasana,MichelBoussuge,MarcBle´tryandHenryProudhon.Wewishto thank them very warmly. We are also very grateful to Eva He´ripre´ and to Rene´ Billardon for beautiful pictures. Contributions received over the years from our colleagues and from students have helped us greatly and gave us the incentive to carrythroughourproject.WearegratefultoProf.GrahamGladwellfromUniversity ofWaterloo,Canada,forincludingthisvolumeasthelastoneintheseriesofwhich heisresponsible. We tried to illustrate the book with enough figures. Many are adapted from publications and the authors are acknowledged. We hope nobody was forgotten; ifnotso,wewouldwelcomeanyrequest. In the previous edition of Mechanical Behaviour of Materials (Klu¨wer 1998) exercises were included. They have disappeared in this revised version, which has expanded.We advise disappointedreaders that we are now writing a volume, which will be entirely devoted to exercises. They will illustrate all chapters of bothvolumes.Furthermore,wewouldliketoproduceanotherbookincludingcase studies and what we called long exercises, that is elaborate studies of various problems. We dream to initiate some interactive production. Thus, we would encourageandwelcomecontributionsofanykind. Publishing a book like this one requires a lot of careful and tedious auxiliary work.We pay tribute in this respectto Joe¨lle Pineau and to Odile Adam. We also liketothankthestaffofSpringerwhotookgoodcareofourworkandansweredour questions,especiallyNathalieJacobsandAnnekePot.Readerswillappreciatethe layoutandwearethankfultooforthescrupulousworkoftheeditor. Acknowledgements Illustrations in this book are for the most part originals or adapted from various sources. Many figures were provided by courtesy of authors and publishers. Let themallbethanked. Permissions for reproduction were solicited for the reproduction of original figures and photographs.Would publishersand authorswho would not have been identified signal it to Springer so acknowledgements could be given in future editions. The authors would like to acknowledge the following publishers for their permissiontouseanumberoffiguresincludedinthetext: Elsevier TheocarisPS,PapadopoulosGA(1980)Elastodynamicformsofcausticsforrunningcracksunder constantvelocity.EngFractMech13:683–698–(Figure15)forFig.2.10 SherryAH,WilkesMA,BeardmoreDW,LidburyDFG(2005)Materialconstraintparametersfor theassessmentofshallowdefectsinstructuralcomponents.PartI:Parameterssolutions.Eng FractMech72:2373–2395–(Figure8)forFig.2.45 RuggieriC,GaoX,DoddsRH(2000)Transferabilityofelastic-plasticfracturetoughnessusingthe Weibullstressapproach:significanceofparametercalibration.EngFractMech67:101–117– (Figure6)forFig.3.9 Martin-Meizoso A, Ocana-Arizcorreta I, Gil-Sevillano J, Fuentes-Perez M (1994) Modeling cleavagefractureofbainiticsteels.ActaMetallMater42:2057–2068–(Figures1and2)for Fig.3.11and3.12 KroonM,FaleskogJ(2005)Micromechanismsofcleavagefractureinitiationinferriticsteelsby carbidecracking.JMechPhysSolids53:171–196–(Figure16a)forFig.3.14 Heerens J, Hellmann D (2002) Development of the Euro fracture toughness dataset. Eng Fract Mech69:421–449–(Figures7a,7c,7g)forFig.3.17 Gas P, Guttmann M, Bernardini J (1982) Interactive co-segregation of Sb and Ni at the grain boundaries of ultra-high purity Fe-based alloys. ActaMetall30:1309–1316 –(Figure 1)for Fig.3.42 vii viii Acknowledgements SeahMP(1977) Grainboundary segregationandtheT-tdependence oftemperbrittlenessActa Metall25:345–357–(Figure2)forFig.3.44 NaudinC,FrundJ-M,PineauA(1999)Intergranularfracturestressandphosphorusgrainboundary segregationofaMn-Ni-Mosteel.ScriptaMater40:1013–1019–(Figure5)forFig.3.48 TanguyB,BouchetC,BugatS,BessonJ(2006)Localapproachtofracturebasedpredictionofthe T56JandTKIC100shiftsduetoirradiationforanA508pressurevesselsteel.EngFractMech 73:191–206–(Figure7)forFig.3.56 BaboutL,Bre´chet Y,MaireE,Fouge`resR(2004)Onthecompetitionbetweenparticlefracture andparticledecohesioninmetalmatrixcomposites.ActaMater52:4517–4525–(Figure1)for Fig.4.2 Devillers-Guerville L, Besson J, Pineau A (1997) Notch fracture toughness of a cast duplex stainlesssteel:modellingofexperimentalscatterandsizeeffects.NuclEngDes168:211–225– (Figure3)forFig.4.3b Lee BJ, Mear ME (1999) Stress concentration induced by an elastic spheroidal particle in a plasticallydeformingsolid.JMechPhysSolids47:1301–1336–(Figures3and5)forFig.4.4b and4.6 Bao Y, Wierzbicki T (2005) On the cut-off value of negative triaxiality for fracture. Eng Fract Mech72:1049–1069–(Figure11)forFig.4.10 MaireE,BordreuilC,BaboutL,BoyerJ-C(2005)Damageinitiationandgrowthinmetals.Com- parisonbetweenmodelingandtomographyexperiments.JMechPhysSolids53:2411–2434– (Figure2)forFig.4.11 WorswickM,PickR(1990)Voidgrowthandconstitutivesofteninginaperiodicallyvoidedsolid. JMechPhysSolids38:601–625–(Figure18)forFig.4.12 PardoenT,HutchinsonJW(2000)Anextendedmodelforvoidgrowthandcoalescence. JMech PhysSolids48:2467–2512–(Figures4,3a,b,cand9a)forFig.4.15,4.16a,b,cand4.24 Weck A, Wilkinson DS (2008) Experimental investigation of void coalescence in metallic sheets containing laser drilled holes. Acta Mater 56:1774–1784 – (Figures 3d, h, o, l) for Fig.4.22,b,c,d Fabre`gueD,PardoenT(2008)Aconstitutivemodelforelastoplasticsolidscontainingprimaryand secondaryvoids.JMechPhysSolids56:719–741–(Figure3)forFig.4.25 Faleskog J, Shih C (1997) Micromechanics of coalescence. I: Synergistic effects of elasticity, plasticyieldingandmulti-size-scalevoids.JMechPhysSolids45:21–45–(Figures14a,b,c) forFig.4.26a,b,c LautridouJ-C,PineauA(1981)CrackinitiationandstablecrackgrowthresistanceinA508steels inrelationtoinclusiondistribution.EngFractMech15:55–71–(Figures5a,b,9aand9)for Fig.4.38,4.45and4.53 McMeekingRM(1977)Finitedeformationanalysisofcrack-tipopeninginelastic-plasticmate- rialsandimplicationforfracture. JMechPhysSolids25:357–381–(Figures10and11)for Fig.4.43 Gullerud AS, Gao X, Dodds RH, Haj-Ali R (2000) Simulation of ductile crack growth using computational cells: numerical aspects. Eng Fract Mech 66:65–92 – (Figures 1a and 9b, c) forFig.4.46aand4.47 RivalinF,BessonJ,DiFantM,PineauA(2001)Ductiletearingofpipeline-steelwideplates:I. Dynamicandquasistaticexperiments.EngFractMech68:329–345–(Figure7b)forFig.4.51 GriffithsJR,OwenDRJ(1971)Anelastic-plasticstressanalysisforanotchedbarinplanestrain bending.JMechPhysSolids19:419–431–(Figure10)forFig.5.4 Tanguy B, Besson J, Piques R, Pineau A (2005a) Ductile-to-brittle transition of a 508 steel characterizedbyCharpyimpacttest.PartI:Experimentalresults.EngFractMech72:49–72– (Figure5)forFig.5.8a,b Heerens J,HellmannD(2002) Development oftheEurofracture toughness dataset.EngFract Mech69:421–449-694–(Figure10b)forFig.5.28 Acknowledgements ix XiaL,ShihCF(1996) Ductilecrack growth–III. Transitiontocleavagefracture incorporating statistics.JMechPhysSolids44:603–639–(Figures9a,b)forFig.5.31a,b PlumtreeA,AbdelRaoufHA(2001)Cyclicstressstrainresponseandsubstructure.IntJfatigue 23:799–805–(Figure5)forFig.6.10 TetelmanAS,RobertsonWD(1963)Directobservationandanalysisofcrackpropagationiniron- 3.5%siliconsinglecrystal.ActaMetall11:415–426–(Figure1)forFig.7.7 XieJH,AlpasAT,NorthwoodDO(2002)Amechanismforthecrackinitiationofcorrosionfatigue ofType 316Lstainless steelinHank’s solution.MaterCharact 48:271–277 –(Figure 3)for Fig.7.22 FournierB,SauzayM,CaesC,Noblecourt M,MottotM,BougaultA,RabeauV,ManJ,Gillia O,LemoineP,PineauA(2008)Creep-fatigue-oxidationinteractionsina9Cr-1Momartensitic steel.PartIII:Lifetimeprediction.IntJFatigue30:1797–1812–(Figure1)forFig.8.26 Lerch BA, Jayaraman N, Antolovich SD (1984) A study of fatigue damage mechanisms in Waspaloyfrom25to800ıC.MaterSciEng66:151–166–(Figure15c)forFig.8.39 Pe´dronJ-P, PineauA(1982) Theeffect ofmicrostructure andenvironment onthecrackgrowth behaviourofInconel718alloyat650ıCunderfatigue,creepandcombinedloading.MaterSci Eng56:143–156–(Figures2a,b,c)forFig.8.41a,b TaylorMP,EvansHE,BussoEP,QianZQ(2006)CreeppropertiesofaPt-aluminidecoating.Acta Mater54:3241–3252–(Figure1)forFig.8.49 DangVanK,MaitournamMH(2002)Onsomerecenttrendsinmodellingofcontactfatigueand wearinrail.Wear253:219–227–(Figure5)forFig.9.29 LimSC,AshbyMF(1987)Wear-mechanismmaps.ActaMetall35:1–24–(Figure27)forFig.9.44 ClarkeDR,FaberKT(1987)Fractureofceramicsandglasses.JPhysChemSolids48:1115– 1157–(Figure29)forFig.10.4 CelarieF,PradesS,BonamyD,DickeleA,BouchaudE,GuillotC,MarliereC(2003)Surfacefrac- tureofglassymaterialasdetectedbyrealtimeatomicforcemicroscopy(AFM)experiments. ApplSurfSci212–213:92–96–(Figure4)forFig.10.12 LuJ,RavichandranG,JohnsonWL(2003)DeformationbehaviouroftheZr41.2Ti13.8Cu12.5 Ni10Be22.5bulkmetallicglassoverawiderangeofstrain-ratesandtemperatures.ActaMater 51:3429–3443–(Figure8)forFig.10.17a BuschR,BakkeE,JohnsonWL(1998)Viscosityofthesupercooledliquidandrelaxationatthe glasstransitionoftheZr41.2Ti13.8Cu12.5N10Be22.5bulkmetallicglassformingalloy.Acta Mater46:4725–4732–(Figure6)for10.17b HeQ,ChengYQ,MaE,XuJ(2011)Locatingbulkmetallicglasseswithhighfracturetoughness: chemical effects and composition optimisation. Acta Mater 59:202–215 – (Figure 4c) for Fig.10.19 vanMierJGM,vanVlietMRA(2003)Influenceofmicrostructureofconcreteonsize/scaleeffect intensilefracture.EngFractMech70:2281–2306–(Figures8a,b,c,d,e)forFig.10.31 Qing H, Mishnaevski L Jr (2009) 3D hierarchical computational model of wood as a cellular material with fibril reinforced heterogeneous multiple layers. Mech Mater 41:1034–1049 – (Figure3a)forFig.10.57 SpringerNetherlands Lambert-PerladeA,GourguesA-F,BessonJ,SturelT,PineauA(2004)Mechanismsandmodeling ofcleavagefractureinsimulatedheat-affectedzonemicrostructureofahigh-strengthlowalloy steel.MetallMaterTransA35A:1039–1053–(Figures5and6)forFig.3.32and3.33 Hofmann S, Lejcek P (1996) Solute segregation at grain boundaries, Interface science, 3:241–2677–(Figure5)forFig.3.37 x Acknowledgements CoxTB,LowJR(1974)AninvestigationoftheplasticfractureofAISI4340and18nickel-200 grademaragingsteels.MetallTransA5:1457–1470–(Figure16a)for4.21b HahnGT,RosenfieldAR(1975)Metallurgicalfactorsaffectingfracturetoughnessofaluminum alloys.MetallTrans6A:653–668–(Figures7and11b)forFig.4.37and4.52 Pineau A (2008) Modelingductile-to-brittle fracture transition insteels– micromechanical and physicalchallenges.IntJFract150:129–156–(Figures12,13and15)forFig.5.33,5.34and 5.35 Antolovich SD, Liu S, Baur R (1981) Low cycle fatigue behaviour of Rene 80 at elevated temperature. Metall Trans 12A:473–481 – (Figures 1, 13d, 9 and 10) for Fig. 8.36, 8.37b, 8.38a,b Wiley&Sons BordetSR,TanguyB,BessonJ,BugatS,MoinereauD,PineauA(2006)CleavagefractureofRPV steelfollowingwarmpre-stressing:micromechanicalanalysisandinterpretationthroughanew model.FatigueFractEngMaterStruct29:1–18–(Figure2)forFig.3.26 Gao X, Faleskog J, Shih CF (1999) Analysis of ductile to cleavage transition in part-through crackusingacellmodelincorporatingstatistics.FatigueFractEngMaterStruct22:239–250– (Figure2a)forFig.4.49 Bathias C (2010) Gigacycle fatigue. In: Bathias C, Pineau A (eds) Fatigue of materials and structures;fundamentals.Wiley,Hoboken,pp179–226–(Figure5.43)forFig.6.17 HalesR(1980)Aquantitativemetallographicalassessmentofstructuraldegradationoftype316 stainlesssteelduringcreep-fatigue.FatigueEngMaterStruct3:339–356–(Figures9and10) forFig.8.20a,b Antolovich SD, Pineau A (2010) High temperature fatigue. In: Bathias C, Pineau A (eds) Fatigueofmaterialsandstructures–applicationtodamageanddesign.ISTE-Wiley,Hoboken, pp1–130–(Figure1.91)forFig.8.47 Laiarinandrasana L,Morgeneyer TF,Proudhon H,RegrainC(2010)Damageofsemicrystalline polyamide6assessedby3-DX-raytomography:frommicrostructuralevolutiontoconstitutive modelling.JPolymSci:PartB:48:1516–1528–(Figure8)forFig.10.41 Lavoisier Fraczkiewicz A, Wolski K, Delafosse D (2011) Se´gre´gation intergranulaire et rupture des mate´riaux cristallins. In: Priester L (ed) Joints de grains et plasticite´ cristalline. Herme`s- Lavoisier,Paris,pp289–332–(Figure6.6)forFig.3.40 Bathias C, Pineau A, (2008) Fatigue des Mate´riaux et des Structures I, Lavoisier, chap. 1, pp17–38–(Figure1.9)forFig.6.15 GuillotY,Be´rangerG(2009)Fissurationfavoriseparl’environnement.In:ClavelM,BompardPh (eds)Endommagementetrupturedesmate´riaux.Lavoisier,Paris,pp207–266–(Figures5.4 and5.5)forFig.7.12dand7.13

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.