ebook img

Measurement of $D^0$ Meson Production and Azimuthal Anisotropy in Au+Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV PDF

0.51 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Measurement of $D^0$ Meson Production and Azimuthal Anisotropy in Au+Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV

Nuclearand ParticlePhysics Proceedings NuclearandParticlePhysicsProceedings00(2017)1–4 Measurement of D0 Meson Production and Azimuthal Anisotropy in Au+Au √ Collisions at s = 200 GeV NN GuannanXie(fortheSTARCollaboration)1 UniversityofScienceandTechnologyofChina,Hefei,230026,China LawrenceBerkeleyNationalLaboratory,Berkeley,CA94720,USA 7 1 0 2 n a Abstract J 7 Due to the large masses, heavy-flavor quarks are dominantly produced in initial hard scattering processes and experiencethewholeevolutionofthemediumproducedinheavy-ioncollisionsatRHICenergies. Theyarealsoex- ] pectedtothermalizeslowerthanlight-flavorquarks. Thusthemeasurementofheavyquarkproductionandazimuthal x e anisotropycanprovideimportantinsightsintothemediumpropertiesthroughtheirinteractionswiththemedium. - Intheseproceedings,wereportmeasurementsofD0productionandellipticflow(v )viatopologicalreconstruction l 2 c using STAR’s recently installed Heavy Flavor Tracker (HFT). The new measurement of the nuclear modification √ u factor(R )of D0 mesonsincentralAu+Aucollisionsat s =200GeVconfirmsthestrongsuppressionathigh n AA NN transverse momenta (p ) reported in the previous publication with much improved precision. We also report the [ T measurementofellipticflowfor D0 mesonsinawidetransversemomentumrangein0-80%minimum-biasAu+Au 1 collisions. TheD0ellipticflowisfinitefor p >2GeV/candissystematicallybelowthatoflighthadronsinthesame T v centralityinterval. Furthermore,severaltheoreticalcalculationsarecomparedtobothR andv measurements,and 8 AA 2 thecharmquarkdiffusioncoefficientisinferredtobebetween2and∼12. 7 8 Keywords: Quark-gluonplasma,Nuclearmodificationfactor,Ellipticflow,HeavyFlavorTracker 1 0 . 1 1. Introduction cross-sectionversustransversemomentum(p )inp+p 0 √ T collisions at s = 200 GeV-7 TeV [1, 2, 3, 4]. Ex- 7 The mass of the charm quark is significantly larger 1 perimental data are compared with Fixed-Order Next- thanthoseoflightquarks,theQCDscale,andthetem- : to-Leading-Log(FONLL)pQCDcalculationsshownas v perature of the quark-gluon plasma (QGP) created at grey bands [5]. Within uncertainties, FONLL calcula- i X RHIC energies. The charm quark mass is mostly un- tions describe the data over a broad range of collision affectedbytheQCDmedium,andthecharmquarksare r energies.AtRHICenergies,charmquarksareproduced a dominantlyproducedattheearlystageofheavy-ioncol- mostlyviainitialhardscatterings. Thisisconfirmedin lisionsthroughhardscatteringprocessesatRHIC.They Figure 2 where the total charm quark cross sections in experience the whole evolution of the system. There- p+p, d+Au and Au+Au collisions are shown to scale fore, charm quarks provide unique information on the with the number of binary nucleon-nucleon collisions propertiesofhotanddensestrongly-coupledQGP. (N )[1,5,6,7,8]. The charm quark production has been systemati- coll cally studied in p+p (p) collisions at various experi- Recent measurements at both the RHIC and the ments. Figure 1 shows the charm quark differential LHC show that high pT charmed meson production is considerably suppressed in the central heavy-ion col- 1AlistofmembersoftheSTARCollaborationandacknowledg- lisions, which indicates strong interactions between mentscanbefoundattheendofthisissue. charmquarksandthemedium. Itisalsofoundthatthe /NuclearandParticlePhysicsProceedings00(2017)1–4 2 D-meson elliptic flow measured at the LHC is compa- decay channel, with a branching ratio of ∼ 3.9% and rablewiththatoflighthadrons[9]. a lifetime of cτ ∼ 123 µm. The kaons and pions are identifiedusingtheenergyloss(dE/dx)measuredbythe Time Projection Chamber (TPC) and the time of flight measured by the Time-Of-Flight (TOF) detector [10]. Thesecondaryverticesarereconstructedasthemiddle points at the Distance of the Closest Approach (DCA) betweenthetwodaughterparticles. WiththeHFT,the followingtopologicalcutsareappliedtogreatlyreduce the combinational background: decay length (distance between primary and decay vertices), DCA between daughter tracks, DCA between reconstructed D0 and the primary vertex, DCA between daughter tracks and STARPreliminary the primary vertex. Topological cuts are optimized in eachD0 p binsusingtheToolkitforMultivariateData T Analysis(TMVA)packagetoachievethebestD0signal significance. Figure1: Charmquarkpairproductioncrosssectionvs. pT atmid- rapidityinp+p(p)collisions[1,2,3,4]. 850 Au+Au 200GeV, 0-80% 3 < p < 4 GeV/c T 800 vo2bs = 0.080 ± 0.023 345000 (dD+0A+eu) SSNyNs =. e2r0ro0r GeV ed yield770500 ht 300 NLO err. eig650 W p+p NNdb) (/dy|σµccy=0122505000 (D0+Dr*u)n12 Au+Au (D0) 5650000 0.S2TA0R.4Pre0l.6imin0.a8ry 1 1.2 1.4 1.6 (cid:113)-(cid:94) 100run9 FONLL in p+p 50 STARPreliminary FONLL err. Figure3: D0 yieldasafunctionoftheanglerelativetotheevent 0 plane(φ−Ψ)for3<pT <4GeV/c,in0-80%Au+Aucollisions. 1 10 102 103 number of binary collisions N bin Theeventplanemethodisusedtoextractthesecond- Figure2: Charmquarkcrosssectionsatmid-rapidityinp+p,d+Au order azimuthal anisotropy (v ) for D0. The second- andAu+AucollisionsmeasuredbytheSTARexperiment. 2 ordereventplane(Ψ)isreconstructedusingTPCtracks excluding decay products of D0 mesons and corrected for non-uniform detector efficiency. In order to reduce 2. ExperimentandAnalysis the non-flow contribution, a η-gap of |∆η| > 0.15 be- tween D0 mesons and charged tracks used for event TheSTARexperimentisalarge-acceptancedetector plane reconstruction is required. The azimuthal distri- covering full azimuth and pseudorapidity of |η| < 1 at bution of D0 mesons with respect to the event plane the RHIC. Data were taken by the STAR experiment (φ−Ψ) is then obtained and weighted by 1/((cid:15)*R) for using the newly installed Heavy Flavor Tracker (HFT) each centrality, where (cid:15) is the D0 reconstruction ef- in the year 2014. The HFT is a high resolution silicon ficiency and R the event plane resolution. The ob- detector which provides a track pointing resolution of served v (vobs) is obtained by fitting the distribution lessthan50µmforkaonswith pT =750MeV/c. of D0 yi2eld2versus (φ − Ψ) with a functional form of About 780M minimum bias Au+Au events are used A(1 + 2vobscos(2(φ − Ψ))) taking into account the fi- 2 inthisanalysis.Theseeventsareselectedtocontainpri- nitebinwidtheffect. Finally,thetruev isobtainedby 2 maryverticeswithin6cmtothecenteroftheSTARde- scalingvobswith1/Rtocorrectfortheeventplanereso- 2 tectoralongthebeamdirectionforuniformHFTaccep- lution. Figure3showstheweightedyieldasafunction tance. D0andD0arereconstructedthroughthehadronic of(φ−Ψ)forD0candidateswith3<p <4GeV/c.The T /NuclearandParticlePhysicsProceedings00(2017)1–4 3 remaining contribution of non-flow effects to the mea- D v isstillbelowthatoflighthadrons,thedifference 0 2 sured v is estimated by scaling the non-flow effect in isreduced.Asthecomparisonisdoneinawidecentral- 2 p+pcollisionstoAu+Aucollisions[11]. ity range (0-80%) in which the D0 production is more biased towards central collisions than light hadrons, a fair comparison in finer centrality ranges is needed to 1.8 Au+Au 200GeV, 0-10% drawfirmconclusions[16,17,18,19]. 1.6 D0 2014 D0 2010/11 1.4 1.2 STAR Preliminary RAA1.0 0.8 p+p uncert. 0.6 pp norm. uncert. AuAu Ncoll uncert. 0.4 0.2 0.0 0 1 2 3 4 5 6 7 8 Transverse Momentum p (GeV/c) T STSATRA PRrePlirmeilnimariyn ary Figure4: D0RAAin0-10%centralAu+Aucollisions. 3. PhysicsResultsandDiscussion Figure6: D0v2/nqasafunctionof(mT−m0)/nqcomparedwiththat oflighthadrons. Figure4showstheR forthemostcentral(0-10%) AA Au+Au collisions. The new results from the HFT are consistentwiththepublishedonesabove2GeV/cwith 1.8 Au+Au 200GeV, 0-10% D0 2014 significantly improved precision for Au+Au measure- 1.6 D02010/11 TAMU ments. Thegreybandsshowuncertaintiesfromthep+p 1.4 SUBATECH Duke baselinemeasuredbeforetheHFTinstallation[1]. The 1.2 RAA shows a strong suppression at high pT indicating RAA 1 0.8 strongcharm-mediuminteractionsatthiskinematicre- 0.6 gion. 0.4 0.2 STARPreliminary 0.3 00 1 2 3 4 5 6 7 8 Au+Au 200GeV, 0-80% Non-flow est. Transverse Momentum p (GeV/c) 0.25 D0 EP T Ks 0.2 Figure7: D0RAAcomparedtovariousmodels. 0.15 v2 0.1 Figures7and8showthemeasuredD0RAAfor0-10% centralAu+Aucollisionsandv for0-80%Au+Aucol- 0.05 2 lisionscomparedwithvariousmodelcalculations. The 0 STASRT PAreRlimPirnealriym inary Duke model uses a Langevin simulation with an input (cid:60)0.050 1 2 3 4 5 6 7 charm quark diffusion coefficient parameter- (2πTD ) S Transverse Momentum pT (GeV/c) fixedto7,whereDS isthecharmquarkspacialdiffusion coefficientandT ismediumtemperature. Theparame- Figure5: D0v2asafunctionofpT,comparedwiththatofKs. ter in the DUKE model is tuned to the LHC D-meson R data [15, 20]. The TAMU calculation uses a non- Figure5showsthev ofD0mesonscomparedtothat AA 2 perturbative approach and the full T-matrix calculation of K . The measured D0 v is non-zero and systemati- s 2 withtheinternalenergyasthepotential,whichpredicts cally below that of K in the range 1 < p < 6 GeV/c. s T 2πTD tobe∼3-11[15]. TheSUBATECHgroupuses To account for the different particle masses and num- S theMC@sHQcalculationwiththelatestEPOS3initial ber of constituent quarks (n ), another comparison is q conditions and the resulting 2πTD ∼2-4 [15]. These shown in Fig. 6, i.e. v /n vs. (m − m )/n where S (cid:113) 2 q T 0 q threemodelscandescribethemeasuredD0RAAreason- mT = p2T +m20. Afterthenq scaling,eventhoughthe ablywell.Meanwhile,theTAMUandSUBATECHcal- /NuclearandParticlePhysicsProceedings00(2017)1–4 4 0.3 ouslythemeasuredD0 RAA andv2 inAu+Aucollisions Au+Au 200GeV, 0-80% Non-flow est. atRHIC. 0.25 D0 TAMU Afactorof2-4improvementintheD0 signalsignifi- 0.2 SUBATECH Duke canceisexpectedfromthereprocessedRun2014data. 0.15 With additional 2 billion minimum-bias events taken v2 0.1 in Run 2016 with full Al-cables, another factor of 2-3 furtherimprovementisexpected. Theseimprovements 0.05 willallowprecisemeasurementsofthecentralitydepen- 0 STARPreliminary denceoftheD R andv inthenearfuture. 0 AA 2 −0.05 0 1 2 3 4 5 6 7 Transverse Momentum p (GeV/c) T Acknowledgement Figure8: D0v2comparedtovariousmodels. We express great gratitude to RNC group at LBNL andHEPgroupatUSTCfortheirsupport.FromUSTC, culationscandescribethemeasuredD0v2aswell,while theauthorissupportedinpartbytheNSFCunderGrant theDUKEcalculationwith2πTDS = 7underestimates No.s11375172,11375184and11675168,andMoSTof theD0v2.Tofurtherconstrainthemediumdiffusionco- ChinaunderNo. 2014CB845400. efficient,itwillbebeneficialtosystematicallystudythe effectofeachingredientindifferentmodelcalculations. References T2×π40 LLaattttiiccee QQCCDD:: BDainnge erjet ea l.et al. pQCD LO STAR 40 [1] L07.2A0d1a3m(2c0z1y2k).et al. (STAR Collaboration), Phys. Rev. D 86, D 30 In 30 [2] Z.Ye,QM14(STARCollaboration), Nucl.Rhys.A931, 520 STARPreliminary fe (2014). T-Matrix F-pot. rre [3] D.Acostaetal.(CDFCollaboration),Phys.Rev.L91,241804 d 20 20 (2003). [4] B.Abelevetal.(ALICECollaboration),Jour.ofHighEnergy 10 HRG T-Matrix U-pot. 10 [5] PMh.yCs.a0c1c,ia1r2i8et(2a0l.1,2P)h.ys.Rev.L95,122001(2005). MC@sHQ [6] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. L 94, 62301(2005). 0 0 0.5 1 1.5 [7] L.Adamczyketal.(STARCollaboration), Phys.Rev.L113, T/T 142301(2014). c [8] R.Vogt,Eur.Phys.J.ST155,213(2008). Figure 9: Charm quark diffusion coefficient from models and the [9] B. Abelev et al. (ALICE Collaboration), Phys. Rev. L 111, 102301(2013) inferredrangefromSTARmeasurements. [10] Ackermannetal.Nucl.Instrum.Meth.A499624-632(2003). [11] A.M. Poskanzer and S. A.Voloshin. , Phys. Rev C 58, 1671 Figure 9 shows the extracted diffusion coefficient (1998) fromdifferentmodelcalculationscomparedtotheyel- [12] L.Adamczyketal.(STARCollaboration),Phys.Lett.B655, low band indicating the inferred values from current 104-113(2007) [13] B. Abelev et al. (ALICE Collaboration), arXiv:1509.06888 measurements. [nucl-ex] [14] G.Xie,QM15(STARCollaboration),Nucl.Rhys.A956,473- 476(2016). 4. SummaryandOutlook [15] A.Andronicetal.,arXiv:1506.03981[nucl-ex] [16] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. L 93, WereportthefirstmeasurementoftheD0 R inthe 252301(2004) AA [17] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 77, most central 0-10% centrality bin and v in the 0-80% √2 54901(2008). centralitybininAu+Aucollisionsat sNN =200GeV [18] L.Adamczyketal.(STARCollaboration), Phys.Rev.L116, using the recently installed HFT at the STAR experi- 62301(2016). ment. ThenewR resultsconfirmthestrongsuppres- [19] M.Lomnitz,QM15(STARCollaboration),Nucl.Rhys.A956, AA 256-259(2016). sion of the D0 yield at high p with much improved T [20] S.Caoetal.,Phys.Rev.C92,024907(2015) precision. ThemeasuredD0 v isnon-zeroandsystem- 2 aticallybelowthev oflighthadronsin0-80%Au+Au 2 collisions. Theoreticalmodelswithcharmquarkdiffu- sioncoefficient2πTD ∼2-12canreproducesimultane- S

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.