Measurement of Angular Correlation in b Quark Pair Production at the LHC as a Test of Perturbative QCD by Brian Lee Dorney Bachelor of Science, Applied Physics Kettering University 2009 Master of Science, Physics Florida Institute of Technology 2011 A dissertation submitted to Florida Institute of Technology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics Melbourne, Florida July 2013 ' 2013 Brian Lee Dorney All Rights Reserved The author grants permission to make single copies We the undersigned committee hereby recommends that the attached document be accepted as fulfilling in part the requirements for the degree of Doctor of Philosophy in Physics. “Measurement of Angular Correlation in b Quark Pair Production at the LHC as a Test of Perturbative QCD” a dissertation by Brian Lee Dorney Marc Baarmand, Ph.D. Professor, Physics and Space Sciences Major Advisor Ugur Abdulla, Ph.D. Professor, Mathematical Sciences Outside Committee Member Daniel Batcheldor, Ph.D. Director Olin Observatory Assistant Professor, Physics and Space Sciences Committee Member Marcus Hohlmann, Ph.D. Associate Professor, Physics and Space Sciences Committee Member Ming Zhang, Ph.D. Professor, Physics and Space Sciences Committee Member Joseph Dwyer, Ph.D. Professor, Department Head, Physics and Space Sciences Abstract Measurement of Angular Correlation in b Quark Pair Production at the LHC as a Test of Perturbative QCD by Brian Lee Dorney Dissertation Advisor: Marc Baarmand, Ph.D. Beauty quarks are pair-produced by strong interactions in multi-TeV proton- proton(pp)collisionsattheCERNLargeHadronCollider(LHC).Suchinteractionsallow for a test of perturbative Quantum Chromodynamics (QCD) in a new energy regime. The primary beauty-antibeauty quark bb pair production mechanisms in perturbative QCDarereferredtoasflavorcreation, flavorexcitation, andgluonsplitting. Thesethree mechanisms produce bb pairs with characteristic kinematic behavior, which contribute differently to the shape of the differential bb production cross section with respect to the difference in the azimuthal angle ∆φ and the combined separation variable ∆R = (cid:112) ∆φ2+∆η2 between the beauty and antibeauty quarks (b and b, respectively); with ∆η being the change in the pseudorapidity η = −ln(tan(θ/2)), θ being the polar angle. These ∆φ and ∆R variables are collectively referred to as angular correlation variables and hence forth referred to as ∆A. By measuring the shape and absolute normalization of the differential production cross section distributions with respect to ∆A a test of the predictions of perturbative QCD can be performed. Thisdissertationdescribesameasurementofthedifferentialproductioncrosssec- tions with respect to the ∆A between two hadronic jets arising from the hadronization iii and decay of b or b (referred to as b hence forth) produced in pp collisions at the LHC observed with the Compact Muon Solenoid (CMS) detector. Hadronic jets are identified as originating from b quarks, i.e. b-tagged, based on the presence of high impact param- eter tracks with respect to the primary pp interaction point in events in which a muon is also produced. The study presented in this dissertation corresponds to an integrated luminosityof3pb−1 collectedin2010bytheCMSexperimentatacenter-of-massenergy of 7 TeV. The visible kinematic phase-space of the differential production cross sections probed in this study is given by the requirement of two b-tagged hadronic jets with pjet > 30 GeV and (cid:12)(cid:12)ηjet(cid:12)(cid:12) < 2.4, with an angular separation of ∆R > 0.6 between them, T one of these jets has a muon within its constituents with pµ > 8 GeV and |ηµ| < 2.1. T The results obtained in data are compared with predictions based on perturbative QCD calculations given by Cascade, MadGraph/MadEvent, and Pythia Monte Carlo event generators. The predictions of perturbative QCD are found to be in agreement the measured differential cross sections within uncertainties. iv Table of Contents List of Figures xi List of Tables xxxiv List of Abbreviations xxxvii Acknowledgements xl Dedicatory xliii 1 Introduction 1 1.1 Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1.1 The Lagrangian . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1.2 The Strong Coupling Constant . . . . . . . . . . . . . . . 6 1.1.1.3 Color Confinement . . . . . . . . . . . . . . . . . . . . . . 10 1.1.1.4 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . 11 1.1.1.5 Hadronization . . . . . . . . . . . . . . . . . . . . . . . . 14 1.1.1.6 Parton Distribution Functions . . . . . . . . . . . . . . . 15 v 1.1.1.7 Fragmentation . . . . . . . . . . . . . . . . . . . . . . . . 18 1.1.2 B Phyiscs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.1.2.1 Hadroproduction of bb Pairs . . . . . . . . . . . . . . . . 19 1.1.2.2 Properties of B hadrons . . . . . . . . . . . . . . . . . . . 21 1.2 Monte Carlo Event Generators . . . . . . . . . . . . . . . . . . . . . . . . 22 1.2.1 Pythia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.2.1.1 Parton Shower in Pythia . . . . . . . . . . . . . . . . . . 25 1.2.1.2 The Underlying Event and its Simulation by Pythia . . 28 1.2.2 MadGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.2.2.1 Matrix-Element Simulation in MadGraph . . . . . . . . 30 1.2.2.2 Jet Matching in MadGraph . . . . . . . . . . . . . . . . 35 1.2.3 Cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 1.2.3.1 Showering via Backwards Evolution . . . . . . . . . . . . 38 1.3 Previous bb Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.3.1 Tevatron Era . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 1.3.2 LHC Era . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 1.4 Proposed Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2 The CMS Detector 50 2.1 Inner Tracking Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.1.1 Silicon Pixel Detector . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.1.2 Silicon Strip Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.1.3 Track Parameter Resolution . . . . . . . . . . . . . . . . . . . . . . 54 vi 2.2 Calorimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.2.1 The Crystal ECAL . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.2.1.1 ECAL Barrel . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.2.1.2 ECAL Preshower . . . . . . . . . . . . . . . . . . . . . . 56 2.2.1.3 ECAL Endcap . . . . . . . . . . . . . . . . . . . . . . . . 57 2.2.1.4 ECAL Energy Resolution . . . . . . . . . . . . . . . . . . 58 2.2.2 The Brass HCAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.2.2.1 HCAL Barrel . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.2.2.2 HCAL Endcap . . . . . . . . . . . . . . . . . . . . . . . . 61 2.2.2.3 HCAL Outer . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.2.2.4 HCAL Forward. . . . . . . . . . . . . . . . . . . . . . . . 62 2.2.2.5 HCAL Energy Resolution . . . . . . . . . . . . . . . . . . 62 2.3 Solenoid Magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.4 The Muon Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3 Jet Reconstruction And B-Tagging 68 3.1 Particle-Flow Event Reconstruction. . . . . . . . . . . . . . . . . . . . . . 71 3.1.1 Origin of Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.1.1.1 Iterative Tracking . . . . . . . . . . . . . . . . . . . . . . 72 3.1.1.2 Calorimeter Clustering . . . . . . . . . . . . . . . . . . . 73 3.1.2 Linking and Block Formation . . . . . . . . . . . . . . . . . . . . . 74 3.1.2.1 Links Between Tracks and Calorimeter Clusters . . . . . 75 3.1.2.2 Links Between Calorimeter Clusters . . . . . . . . . . . . 76 vii 3.1.2.3 Links Between Tracks . . . . . . . . . . . . . . . . . . . . 76 3.1.3 Particles Reconstruction and Identification . . . . . . . . . . . . . 77 3.1.3.1 Particle-Flow Muons and Electrons . . . . . . . . . . . . 78 3.1.3.2 Particle-Flow Hadrons and Photons . . . . . . . . . . . . 78 3.2 Jet Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2.1 The k Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . 81 T 3.2.1.1 k Clustering Procedure . . . . . . . . . . . . . . . . . . 82 T 3.2.2 The Anti-k Clustering Algorithm . . . . . . . . . . . . . . . . . . 83 T 3.2.2.1 Properties of the Anti-k Clustering Algorithm . . . . . . 84 T 3.2.3 Particle-Flow Anti-k Jets. . . . . . . . . . . . . . . . . . . . . . . 87 T 3.3 B-Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.3.1 Signed Impact Parameter Significance . . . . . . . . . . . . . . . . 88 3.3.2 The Track Counting Algorithm . . . . . . . . . . . . . . . . . . . . 89 4 Angular Correlation Measurement 91 4.1 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.1.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.1.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.2 Physics Object Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.2.1 Muon Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.2.2 Jet Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.2.2.1 Simulated Jet Flavor Definition . . . . . . . . . . . . . . 97 4.2.2.2 B Hadron Branching Fraction Scale Factor . . . . . . . . 97 viii 4.2.2.3 Jet Energy Scale and Resolution . . . . . . . . . . . . . . 98 4.2.2.4 Muon and Jet Association . . . . . . . . . . . . . . . . . 99 4.3 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.3.1 Online Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.3.2 Offline Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.3.2.1 Preselection . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.3.2.2 B-Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.3.3 Resolution and Response . . . . . . . . . . . . . . . . . . . . . . . 107 4.3.4 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.3.4.1 Online Efficiency . . . . . . . . . . . . . . . . . . . . . . . 112 4.3.4.2 Online Plus Offline Efficiency . . . . . . . . . . . . . . . . 116 4.4 Signal Purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.4.1 System4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.4.2 κ Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 ij 4.4.2.1 Binned by pjet . . . . . . . . . . . . . . . . . . . . . . . . 124 T (cid:12) (cid:12) 4.4.2.2 Binned by (cid:12)ηjet(cid:12) . . . . . . . . . . . . . . . . . . . . . . . 125 4.4.2.3 Track Mismatching . . . . . . . . . . . . . . . . . . . . . 126 4.4.2.4 Poorly Reconstructed Jets . . . . . . . . . . . . . . . . . 132 4.4.3 System4 Toy Method . . . . . . . . . . . . . . . . . . . . . . . . . 137 4.4.3.1 Closure Tests . . . . . . . . . . . . . . . . . . . . . . . . . 138 4.4.3.2 System4 Solution From Data . . . . . . . . . . . . . . . . 140 4.5 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 ix
Description: