HELSINKIUNIVERSITYOFTECHNOLOGY FacultyofElectronics,CommunicationsandAutomation DepartmentofSignalProcessingandAcoustics MarkoHiipakka Measurement Apparatus and Modelling Techniques of Ear Canal Acoustics Master’s Thesis submitted in partial fulfilment of the requirements for the degree of Master of ScienceinTechnology. Espoo,24Nov,2008 Supervisor: ProfessorMattiKarjalainen Instructors: D.Sc. (Tech.) AnttiKelloniemi HELSINKIUNIVERSITY ABSTRACTOFTHE OFTECHNOLOGY MASTER’STHESIS Author: MarkoTapioHiipakka Nameofthethesis: MeasurementApparatusandModellingTechniquesofEarCanalAcoustics Date: 24Nov,2008 Numberofpages: vii+85 Faculty: FacultyofElectronics,CommunicationandAutomation Department: DepartmentofSignalProcessingandAcoustics Professorship: S-89 Supervisor: Prof. MattiKarjalainen Instructors: D.Sc. (Tech.) AnttiKelloniemi Each one of us perceives the sounds around us differently. The acoustic characteristics of the outerearhaveasignificantinfluencetothesensationofhearing. Thetendencyoftheearcanal to shape the spectral structure of sounds has not been studied systematically and the role of the ear canal as a part of the outer ear is not yet completely known. Our research focused on scrutinizing the effects of varying physical dimensions of the outer ear and particularly those of the ear canal to the pressure at the eardrum. The main emphasis was on determining the influenceofthelengthoftheearcanaltothefrequencyresponseattheeardrumandtherebyto thesensationofhearing. Inaddition,theeardrum’sdampingoftheresonancefrequencieswas studied. Twoearcanalsimulatorsandonedummyheadweremanufacturedforthepressurefrequency response measurements. The target was to physically model the acoustic behaviour of the humanhead,pinna,andearcanalasaccuratelyaspossible. Inaddition,thefrequencyresponses were measured from the ear canals of human test subjects in various acoustical conditions. A physics-basedcomputationalmodelandequationsofthephysicsofsoundwereusedtovalidate theresultsobtainedfromthemeasurements. Thebehaviouroftheearcanalwasinvestigatedinnormallisteningconditionsaswellasinfree fieldconditions. Inaddition,thebehaviourwasstudiedinasituationwherethecanalentrance was blocked with an insert earphone. A special pair of earphones with in-ear microphones was constructed for this purpose. The earphone was also used for studying two important phenomenarelatedtoinsertearphones,namelytheocclusioneffectandsoundleakage. Fromourresearchwemayconcludethatthephysicaldimensionsandespeciallythelengthof the ear canal have a considerable effect to the pressure frequency response at the eardrum. In addition,wemayconclude,thatitispossibletoaccuratelymodeltheacousticbehaviourofthe humanouterearwithphysicalsimulators. Keywords: Earcanal,Outerear,Eardrum,Frequencyresponse. i TEKNILLINENKORKEAKOULU DIPLOMITYÖNTIIVISTELMÄ Tekijä: MarkoTapioHiipakka Työnnimi: Korvakäytävänakustistenominaisuuksienmittausjamallinnus Päivämäärä: 24.11.2008 Sivuja: vii+85 Tiedekunta: Elektroniikan,tietoliikenteenjaautomaationtiedekunta Laitos: Signaalinkäsittelynjaakustiikanlaitos Professuuri: S-89 Työnvalvoja: Prof.MattiKarjalainen Työnohjaajat: TkTAnttiKelloniemi Ulkokorvan akustiset ominaisuudet vaikuttavat merkittävästi ihmisen kuuloaistimukseen. Yk- silölliseterotulkokorvanrakenteissaovatyksisyysiihen,ettäkuulemmemeitäympäröivätää- net hieman eri lailla. Korvakäytävän taipumusta muokata kuulemiemme äänten spektriraken- nettaontutkittuvähän,eikäsenakustisiaominaisuuksiatunnetavielätäysin.Tutkimuksessam- mekeskityttiinkartoittamaanulkokorvanjaerityisestikorvakäytävänfyysistenulottuvuuksien vaikutustatärykalvollamitattavaanäänipaineeseen.Tutkimuksenpääpainonaoliselvittääkor- vakäytävänpituudenvaikutustaajuusvasteeseentärykalvollajasitäkauttakuuloaistimukseen. Lisäksitutkittiintärykalvonaiheuttamaavaimennustakorvakäytävänresonansseihin. Taajuusvasteidenmittauksiavartenrakennettiinkaksiuudentyyppistäkorvakäytäväsimulaatto- riasekäyksikeinopää.Tavoitteenaolimallintaafyysisestiihmisenpään,korvalehdenjakorva- käytävänakustinenkäyttäytyminenmahdollisimmantarkasti.Lisäksitutkimuksessakäytettiin koehenkilöitä, joiden korvakäytävien taajuusvasteita mitattiin erilaisissa olosuhteissa. Korva- käytäväsimulaattorinlaskennallinenmallisekääänenfysiikanlaskukaavattoimivatmittaustu- lostenteoreettisinaperusteluina. Korvakäytävänkäyttäytymistätutkittiinnormaaleissakuunteluolosuhteissajavapaakenttäolo- suhteissa. Lisäksi tutkittiin tilannetta, jossa korvakäytävään on asetettu korvakäytäväkuuloke (engl. “insert earphone”). Tätä käyttötilannetta ja sen tutkimista varten valmistettiin korva- käytävämikrofonit sisältävä korvakäytäväkuulokepari, jolla tutkittiin myös kuulokekuuntelun kannaltatärkeitäokkluusioilmiötäjaäänenvuotoa. Tutkimuksenlopputuloksenavoidaantodeta,ettäulkokorvanulottuvuuksillajaerityisestikor- vakäytävänpituudellaonsuurimerkitystaajuusvasteeseentärykalvolla.Lisäksivoidaantodeta, että fyysisillä simulaattoreilla on mahdollista tarkasti mallintaa ihmisen ulkokorvan akustinen käyttäytyminen. Avainsanat:Korvakäytävä,Ulkokorva,Tärykalvo,Taajuusvaste. ii Acknowledgements Research for this Master’s thesis was conducted in the Department of Signal Processing and AcousticsattheHelsinkiUniversityofTechnologywithfundingfromNokiaOyj. I want to thank Professor Matti Karjalainen for his enthusiastic participation in the planning, researchandpracticalrealizationsneededforthisThesistobecompleted. Inaddition,hisindis- pensableguidanceandsupervisionhavehelpedinsolvingtheoreticalandpracticalproblems. IwishtothankDr. AnttiKelloniemiforsharinghisexpertiseandforinstructionsastoresearch directions. My gratitude also goes to Dr. Jouni Knuuttila, Jarkko Kuntanen, Heidi Linden and TimoToivanenforasuccessfulcooperation. I would also like to thank my co-workers Miikka Tikander, Jussi Rämö and Ville Riikonen for cooperation and shared efforts within our research. I also have the staff and co-researchers of the Department of Signal Processing and Acoustics to thank for help and support, and also for thegreatspirityouhavebuiltupatthe‘laboratory’. I am deeply indebted to friends, family and relatives who have supported me on my path to graduation. Finally, I would like to thank the Polytech Choir as well as Driving School’s principal Veikko Sompaandhispupilsfortheirirrecoverablehelpintheavoidanceofanoverhastygraduation. Otaniemi,24November,2008 Marko“Magge”TapioHiipakka iii Contents Abbreviations vii 1 Introduction 1 2 Acousticsofhearing 3 2.1 Soundandhearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Outerear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 Pinna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 Earcanal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.3 Eardrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Middleear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Innerear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4.1 Innerearstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4.2 Innerearfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5 Soundsourcelocalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5.1 Binauralcues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5.2 Monauralcues,HRTF’s . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5.3 Theprecedenceeffect . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Headphoneandmicrophonetechnology 16 3.1 Headphones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1.1 Headphonecategories . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1.2 Headphonetransducers . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.3 PressureChamberEffect . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Microphones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 iv 3.2.1 Microphonecategories . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.2 Microphonesensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.3 Microphonedirectionalsensitivity . . . . . . . . . . . . . . . . . . . . 23 4 Outerearmodels 24 4.1 Physicalsimulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.1 Dummyheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.2 Earcanalsimulators . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1.3 Tubesasearcanalsimulators. . . . . . . . . . . . . . . . . . . . . . . 27 4.1.4 Adjustableearcanalsimulator(Adecs) . . . . . . . . . . . . . . . . . 27 4.1.5 Multi-adjustableearcanalsimulator(Madecs). . . . . . . . . . . . . . 28 4.1.6 Artificialpinnas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.1.7 Dummyheadwithadjustableearcanal(Dadec) . . . . . . . . . . . . . 30 4.2 Computationalmodelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.1 Lumpedelementandtransmissionlinemodelling . . . . . . . . . . . . 31 4.2.2 Estimationofpressureateardrum . . . . . . . . . . . . . . . . . . . . 36 5 Measurements 38 5.1 Measurementequipmentandtechnology . . . . . . . . . . . . . . . . . . . . . 38 5.1.1 Equipmentandsoftware . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.1.2 Earphonewithfittedin-earmicrophone(Efim) . . . . . . . . . . . . . 39 5.1.3 Measurementenvironments . . . . . . . . . . . . . . . . . . . . . . . 41 5.2 Acousticpropertiesofopenearcanal . . . . . . . . . . . . . . . . . . . . . . . 41 5.2.1 Frequencyresponseattheearcanalentrance . . . . . . . . . . . . . . 41 5.2.2 Frequencyresponsesalongthecanal . . . . . . . . . . . . . . . . . . . 46 5.2.3 Frequencyresponseattheeardrum. . . . . . . . . . . . . . . . . . . . 49 5.2.4 Effectofdifferentouterearshapes . . . . . . . . . . . . . . . . . . . . 53 5.2.5 Effectofdrumimpedance . . . . . . . . . . . . . . . . . . . . . . . . 57 5.2.6 Acomputationalmodel . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.3 Acousticpropertiesofblockedearcanal . . . . . . . . . . . . . . . . . . . . . 60 5.3.1 Frequencyresponsesofblockedearcanalsimulators . . . . . . . . . . 63 5.3.2 Frequencyresponsesofhumanears . . . . . . . . . . . . . . . . . . . 65 5.3.3 Effectofeardrumimpedance . . . . . . . . . . . . . . . . . . . . . . . 67 v 5.3.4 Effectofcanalshape . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.3.5 Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.3.6 Occlusioneffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6 ConclusionsandFutureWork 73 6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.3 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 A Testsubjects 80 B Figures 81 vi Abbreviations Adecs Adjustableearcanalsimulator B&K Brüel&Kjær Dadec Dummyheadwithadjustableearcanals Efim Earphonewithfittedin-earmicrophone FFT FastFourierTransform HATS HeadandTorsoSimulator HRTF Head-relatedtransferfunction IEC InternationalElectrotechnicalCommission ILD Interauralleveldifference ITD Interauraltimedifference ITU InternationalTelecommunicationUnion Madecs Multi-adjustableearcanalsimulator SPL Soundpressurelevel vii Chapter 1 Introduction It is well known that the outer ear contributes to the spectral shaping of sounds we hear in everyday life. People have different ears and different ear canals, hence the sound pressure at people’seardrumsarenotsimilarlydistributedinthefrequencydomain. Inparttherefore,people perceivesoundsdifferently. Themiddleear,theinnerearandthenervoussystemalsoaffectthe way we hear. The research for this thesis, though, was limited to, and focused on the spectral shapingcharacteristicsoftheouterearandespeciallytheearcanal,whichistheinnermostpart oftheouterear. Innormallisteningsituationsthewholeouterearcontributestothespectralshapingofsound before they reach the eardrum. The ear canal acts like a quarter-wave resonator and hence am- plifiestheresonancefrequencies. Thelocationsoftheseresonancefrequenciesinthefrequency domain depend mainly on the length of the ear canal. The shape and size of the pinna, and the curvatureoftheearcanalalsohaveaneffectonthepressurefrequencyresponseattheeardrum. Insert type earphones are commonly used when listening to music and together with mobile phones etc. The sound transmission path from the insert earphone to the eardrum is different fromthecasewhenaloudspeakerisusedasthesoundsource. Thesoundwavetravelsthrough theearcanalonly, anearcanalthatissuggestiveofahalf-waveresonator. Thehalf-wavereso- nancefrequenciesarepronouncedattheeardrum,andthelocationsofthesefrequenciesdepend once again on the length of the ear canal. In addition, the overall structure of the ear canal has aneffectontheshapeofthefrequencyresponseateardrum. Furthermore,thepressurechamber effectandtheocclusioneffectareimportantfactorsregardinginsertearphones. Objectives Itistheobjectiveofthisthesistostudytheacousticalbehaviouroftheearcanal. Thetargetisto gainknowledgethatwillbeusefulinfutureresearchprojectsrelatedtoe.g.soundreproduction with hearing aids or headphones. The behaviour is investigated in normal listening acoustics and in free field conditions. In addition, a thorough study on the ear canal behaviour when it is blockedwithaninserttypeearphoneisperformed. Itisinourspecialinteresttostudythevarying physicaldimensionsoftheearcanalastowhateffecttheyhaveonthefrequencyresponseatthe eardrum. 1 CHAPTER1. INTRODUCTION 2 Furthermore, the goal of the research related to this thesis is to model the ear canal and the wholeouterearasaccuratelyaspossible. Twoapproachesareapplied: thebuildingofphysical simulators and physics-based computational modelling, the emphasis being on simulators. The aimistovalidatetheuseofbothapproachesasparallelmodellingtechniques. Finally, we hope that the results obtained in our research can help focusing future research projects. Outline This thesis consists of three main parts; first, the basics of hearing and technologies related to this thesis are presented. In the second part, a look at physical simulation and physics-based computational modelling is taken. In the third part, the acoustic behaviour of the outer ear and theearcanalisviewedthroughmeasurementresults. ThebasicsofsoundandhearingareoverviewedinChapter2. Thedifferentpartsofthehuman auditorysystemfromthepinnatotheinnereararepresented. Inaddition,thebasicsofbinaural hearingarebrieflypresented. HeadphoneandmicrophonetechnologiesarepresentedinChapter 3. Earcanalsimulators,dummyheadsandphysics-basedcomputationalmodellingarepresented inChapter4. Thephysicalsimulatorsusedintheresearchforthisthesiswereself-madeandthey wereintendedtocopytheacousticalbehaviouroftheouterear. InChapter5theacousticbehaviouroftheearcanalinnormallisteningconditionsandwhen thecanalentranceisblockedwithaninsertearphoneisstudied. Thenovelearcanalsimulators and a dummy head were used for measuring the effects of varying physical parameters such as theearcanallengthandtheoverallshapeoftheouterear. ConclusionsandfutureworkscenariosarediscussedinChapter6.
Description: