ebook img

Mean Field Theories and Dual Variation PDF

299 Pages·2009·1.701 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mean Field Theories and Dual Variation

ATLANTIS STUDIES IN MATHEMATICS FORENGINEERING AND SCIENCE VOLUME2 SERIES EDITOR: C.K.CHUI Atlantis Studies in Mathematics for Engineering and Science SeriesEditor: C.K.Chui,StanfordUniversity,USA (ISSN:1875-7642) Aimsandscopeoftheseries Theseries‘AtlantisStudiesinMathematicsforEngineeringandScience(AMES)publishes highqualitymonographsin appliedmathematics, computationalmathematics, andstatis- ticsthathavethepotentialtomakeasignificantimpactontheadvancementofengineering and science on the one hand, and economics and commerce on the other. We welcome submission of book proposals and manuscripts from mathematical scientists worldwide whoshareourvisionofmathematicsastheengineofprogressinthedisciplinesmentioned above. Allbooksinthisseriesareco-publishedwithWorldScientific. Formoreinformationonthisseriesandourotherbookseries,pleasevisitourwebsiteat: www.atlantis-press.com/publications/books AMSTERDAM –PARIS (cid:2)c ATLANTISPRESS/WORLDSCIENTIFIC Mean Field Theories and Dual Variation Takashi SUZUKI DivisionofMathematicalScience DepartmentofSystemsInnovation GraduateSchoolofEngineeringScience OsakaUniversity Osaka Japan AMSTERDAM –PARIS AtlantisPress 29,avenueLaumie`re 75019Paris,France ForinformationonallAtlantisPresspublications,visitourwebsiteat:www.atlantis-press.com Copyright Thisbook,oranypartsthereof,maynotbereproducedforcommercialpurposesinanyformorby anymeans,electronicormechanical,includingphotocopying,recordingoranyinformationstorage andretrievalsystemknownortobeinvented,withoutpriorpermissionfromthePublisher. ISBN:978-90-78677-14-7 e-ISBN:978-94-91216-22-0 ISSN:1875-7642 (cid:2)c 2008ATLANTISPRESS/WORLDSCIENTIFIC Preface In general, systems of nonlinearpartial differentialequationsare formulatedand studied individually according to sepcific physical or biological models of interest. There are, however,certain classes of Lagrangiansystemsfor which the asymptoticbehaviorof the non-stationarysolutions,includingtheblowupmechanism,iscontrolledbytheirtotalsets of stationary solutions. In this book, we will show that these equationshave their origin inmeanfieldtheoryandthattheassociatedellipticproblemsareprovidedwithmassand energyquantizationsbecauseoftheirscalingproperties. Meanfieldapproximationhasbeenadoptedtodescribemacroscopicphenomenafrommi- croscopicoverviews,withsomesuccess,thoughstillinprogress,inmanyareasofscience, such as the study of turbulence, gauge field, plasma physics, self-interacting fluids, ki- netictheory,distributionfunctionmethodinquantumchemistry,tumorgrowthmodelling, phenomenologyofcriticalphenomena. Inthislastscientific area,phasetransition,phase separation,andshapememoryalloysareincluded. However,inspiteofsuchawiderangeofscientificareasthatareconcernedwiththemean fieldtheory,aunifiedstudyofitsmathematicalstructurehasnotbeendiscusssedexplicitly intheopenliterature. Thebenefitofthispointofviewonnonlinearproblemsshouldhave siginificantimpactonfutureresearch,aswillbeseenfromtheunderlyingfeaturesofself- assembly or bottom-upself-organizationwhich is to be illustrated in a unified way. The aimofthisbookistoformulatethevariationalandhierarchicalaspectsoftheequationsthat arise in the mean field theory from macroscopic profiles to microscopic principles, from dynamicstoequilibrium,andfrombiologicalmodelstomodelsthatarisefromchemistry andphysics. Oneofthekeyconceptstobeusedrepeatedlyinourdiscussioninthisbookisthenotionof duality,whichhasbeentheoriginoftheextensionoffunctionstodistributions273thatpro- videsausefultoolfortheformulationofweaksolutionsinthetheoryofpartialdifferential equations. Inaddition,Riesz’representationtheorem100providestheformulationofduals forsuchimportantfunctionspacesasC(K)(cid:3)∼=M(K)andL1(Ω)(cid:3)∼=L∞(Ω),whereKandΩ arecompactandopensetsinRn,respectively.Thusifafamilyofcontinuousapproximate solutionsisnotcompactbutisprovidedwithaprioriestimates,say,intheL∞ orL1 norm, ∞ then the weak solution is realized as an L functionor a measure, respectively, whereby several fundamental profiles caused by the nonlinearity can be observed (e.g., interface, shock, localization, concentration, condensate, blowup, self-similar evolution, travelling andspiralwaves,...).Anotherconceptofduality,namely,thatofHardy-BMO288isreflex- v vi Preface ive. ItisrepresentedbyLlogL(Ω)(cid:3)∼=Exp(Ω)andExp(Ω)(cid:3)∼=LlogL(Ω), whereΩ⊂Rn isaboundeddomain. TheHardy-BMOdualityisassociatedwiththemeanfieldhierarchy through the entropy functional and the Gibbs measure. Thus this duality notion can be applied to the study of phenomena between particles and fields in the microscopic level as governedby the Boltzmann principle and the zeta-function, respectively. Yet another dualityconceptthatwillbeusedinthisbookisoperatortheoretical.Forexample,forsome givenrectangularmatrixAacolumnvectorb,thedualityofthelinearmodelAx=bisthe transposedoperationthatarisesinthecontextoftheFredholmformulationconcerningthe existenceanduniquenessofthesolution. Ontheotherhand,thelinearinequalityAx≥b inconvexanalysishasananalogousdualityformulation.Forexample,thisformulationre- sultsfromintegratingalinearfunctionalequationwheretheLegendretransformationtakes ontheroleofthetransposedoperator.30 Thisinvolutiveoperationisoftenreferredtoasthe Fenchel-Moreauduality,whichresultsin the morecomplicateddualitiesof Kuhn-Tucker andToland. Here, theTolanddualityisconcernedwith thefunctionalrepresentedbythe differenceof two convexfunctionals, such as the Helmholtz free energy. Thefield func- tionalthenisobtainedinitsdualform,andthesetwoprincipalfunctionalsareregardedas unfoldingsoftheLagrangian. Thisbookconsistsoftwomainchapters. Thefirstchapterisdevotedtothestudyofvaria- tionalstructures,wherethequantizedblowupmechanismobservedinthechemotaxissys- tem304 is first described. Within this section, the free energytransmission, which results intheformationofself-assembly,isemphasizedwhichmeansthatthesourceoftheemer- genceis the wedge ofblowupenvelope,while entropyand massare exchangedto create a clean self with the quantized mass. The leading principle derived from this study can be summarized as follows: dual variation sealed in the mean field hierarchyand scaling that reveals this hierarchy. In fact, the phenomenonof quantizationis sealed in the total set of stationarysolutions, referredto as the nonlinearspectralmechanics. The structure ofdualvariationcontrols,notonlythelocaldynamicsaroundthestationarystate,butalso theformationofself-assemblyrealizedasa globaldynamicsincludingtheblowupofthe solution. Thisdualityisassociatedwiththeconvexityofthefunctional;andthus,ourde- scriptioninvolvesconvexanalysisas mentionedabove. We will examinethe phenomena and logistics of both variational and dynamical structures of several problems including phase transition, phase separation, hysteresis in shape memory alloys which review the theoryofnon-equilibriumthermodynamics. Chapter 2 is devoted to the discussion of the method of scaling for revealing the mathe- maticalprincipleshiddeninthemeanfieldhierarchysubjecttothesecondlawofthermo- dynamics. Moreprecisely,wewilldescribethequantizedblowupmechanismobservedin self-gravitating fluid, turbulence, and self-dual gauge field. In particular, blowup anlay- sis,oneofthemostimportantapplicationsofthemethodofscaling,isusedtoclarifythis mechanism. This analysis consists of four ingredients, namely, scaling invarianceof the problem,classificationofthesolutionofthelimitproblemdefinedonthewholespaceand time, control of the rescaled solution at infinity, and hierarchicalarguments. Meanwhile we will also describe the method of statistical mechanics for the study of macro-scopic Preface vii phenomenacausedbythemicro-scopicprinciples. Inparticular,wewillre-formulatethe simplified system of chemotaxisas a fundamentalequationof the materialtransport, the Smoluchowski-Poissonequation. Unfortunately, a complete overview of the topics mentioned above is beyond the scope of this book, and the list of referencesis far from being sufficient. Furthermore, several importantrelatedtopicsaremissing,amongwhicharethecomplexGinzburg-Landaufree energy associated with super-conductivity in low temperature,22,227 Arnold’s variational principlefordescribinigthe MHD equilibrium,11 the densityfunctiontheoryofquantum chemistry,43kineticequationsinfluiddynamics,29andthedualitybetweenAleksandrov’s probleminintegralgeometryandtheoptimalmasstransporttheory.238 Therearealsosev- eralstationaryproblemsinengineeringassociatedwithduality113whichmaybeextended tothenon-stationaryproblemsoftheirown. We take this opportunity to clarify several terminologies used in this book that are the concernofthermalphenomenaassociatedwith dissipation. First, wefollowthe classical conceptsofequilibriumthermodynamicsandclassifythermalsystemsintoisolated,closed, and open systems. This classification is also associated with the theory of equilibrium statistical mechanics. More precisely, these systems are provided with the microscopic structuresofmicro-canonical,canonical,andgrand-canonicalensembles,respectively. A closedsystemhereindicatesthelackoftransportofmaterialsbetweentheoutersystems, wherebythetransportofheatandthatoftheenergyarepermitted. Intheopensystem,on theotherhand,thetransportofmaterialbetweentheoutersystemsisalsopermitted.Next, inviewofthetheoryofnon-equilibriumthermodynamics,weaddonemoreaspecttothe openness,thatisthedissipationofentropyto theoutersystem.224 Underthisagreement, closednessisre-formulatedasasystemprovidedwithdecreasingtotalfreeenergyorthat providedwith increasing total entropy. Thus we have two kinds of closedness: physical closednessintermsofkineticand/ormaterial,andthermodynamicalclosednessdescribed bytwotypicalmodelsdiscussedindetailsinthisbook.Freeenergytransmissionoccursin thelattercaseandcouldbetheoriginof”self-assembly”. Inthisconnection,wenotethatthedissipativesystemisdefinedbythepresenceofanat- tractorinthetheoryofdynamicalsystems. Gradientsystemwithcompactsemi-orbitsisa typicaldissipativesysteminthiscase.128 We believe,however,thatthisdefinitionofdis- sipativesystemdoesnotdescribewhatwereobservedby.224 Moreprecisely,decreaseof thefreeenergyorincreaseoftheentropymeansthermodynamicalclosedness. Itisformu- lated bythegradientsystem in the sametwo modelsasmentionedabove,and, therefore, isneverprovidedwiththedissipationinthesenseofnon-equilibriumthermodynamics224 in spite of the fact that these two models are typical dissipative systems in the theory of dynamical systems. To avoid this confusion, the above mentioned terminology of dissi- pativesystem in thetheoryofdynamicalsystems128 isnotusedin thisbook. Actually, a recentparadigmasserts two aspects of self-organization,far-from-equilibrium(top-down self-organization)and self-assembly (bottom -upself-organization),emphasizingthe role oftheirhierarchicaldevelopments,withtheHopfbifurcationcastingthethreshold.345 Dis- sipationoccursinastatefar-from-equilibrium,whichresultsinaspiralwave,atravelling viii Preface wave,aperiodicstructure,asef-similardevelopment,andsoforth;whileself-assembly,we believe,isformednear-from-equilibriumofthermodynamicallyclosedsysteminducedby thestationarystates,developingacondensate,acollapse,ablowup,aspike,andsoforth. Thisbookisconcernedwiththeformationofself-assembly.Itsprofileisprovidedwiththe ”tripleseal,” ofwhichbasic conceptshavealreadybeendescribed. First, severalfeatures ofself-assemblythatisoneaspectoftheself-organizationaresealedinthermodynamically closedsystems.Secondly,thedynamicsoftheclosedsystemissealedinthetotalsetofsta- tionarystates. Finally,thestationarystatesthemselvesaresealedinthe(skew-)Lagrangian, providedwith the structure of dual variation. These features of the mean field hierarchy are certainly revealed by the method of scaling derived from the microscopic principle. Insummary,formationofself-assemblyarisesinthermodynamicallyclosedsystems,and hencethisprocessissubjecttothecalculusofvariation.Theclosedsystemfollowsthemi- croscopicprinciple.Thisprinciplecontrolsthemeanfieldhierarchytotally,and,therefore, fundamentalprofilesof the macroscopicmean field equation are revealedby the method ofscaling. WewouldliketothankProfessorTomohikoYamaguchiforseveralstimulative discussionsonnon-equilibriumthermodynamics. ThanksarealsoduetoProfessorsBiotr Biler,FumioKikuchi,FutoshiTakahashi,andGershonWolanskyforcarefulreadingover theprimaryversionofthemanuscript. TakashiSuzuki Osaka,Japan June,30,2008 Contents Preface v Chapter1. Duality-SealedVariation 1 1.1 Chemotaxis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 ThermalTransport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 CollapseFormation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3 MeanFieldHierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.4 StationaryState . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.1.5 LocalizationandSymmetrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.1.6 Rescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.1.7 MassQuantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.1.8 BlowupRate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.1.9 BlowupinInfiniteTime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.1.10 TimeRelaxization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.1.11 GeometricFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.1.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 1.2 TolandDuality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 1.2.1 ExponentialNonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 1.2.2 FullSystemofChemotaxis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 1.2.3 Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 1.2.4 VariationalEquivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 1.2.5 SpectralEquivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 1.2.6 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 1.2.7 GradientSystemswithDuality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 1.2.8 EntropyFunctional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 1.2.9 ZygmundSpace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 1.2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 1.3 Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 1.3.1 Non-ConvexEvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 1.3.2 GradientandSkew-GradientSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 1.3.3 Skew-GradientSystemswithDuality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 1.3.4 Semi-Unfolding-Minimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 1.3.5 Kuhn-TuckerDuality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 1.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 1.4 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 1.4.1 StefanProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 1.4.2 ThermalEquilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 1.4.3 Penrose-FifeTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 1.4.4 Non-Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 1.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 1.5 PhaseFields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 1.5.1 Fix-CaginalpEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.