ebook img

Matrix Preconditioning Techniques and Applications PDF

601 Pages·2005·4.558 MB·English
by  Ke Chen
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Matrix Preconditioning Techniques and Applications

CAMBRIDGEMONOGRAPHSON APPLIEDANDCOMPUTATIONAL MATHEMATICS SeriesEditors M.J.ABLOWITZ,S.H.DAVIS,E.J.HINCH,A.ISERLES, J.OCKENDON,P.J.OLVER 19 Matrix Preconditioning Techniques and Applications The Cambridge Monographs on Applied and Computational Mathematics reflectsthecrucialroleofmathematicalandcomputationaltechniquesincon- temporaryscience.Theseriespublishesexpositionsonallaspectsofapplicable andnumericalmathematics,withanemphasisonnewdevelopmentsinthisfast- movingareaofresearch. State-of-the-art methods and algorithms as well as modern mathematical descriptionsofphysicalandmechanicalideasarepresentedinamannersuited tograduateresearchstudentsandprofessionalsalike.Soundpedagogicalpre- sentationisaprerequisite.Itisintendedthatbooksintheserieswillserveto informanewgenerationofresearchers. Alsointhisseries: 1. APracticalGuidetoPseudospectralMethods,BengtFornberg 2. Dynamical Systems and Numerical Analysis, A. M. Stuart and A. R. Humphries 3. LevelSetMethodsandFastMarchingMethods,J.A.Sethian 4. TheNumericalSolutionofIntegralEquationsoftheSecondKind,Kendall E.Atkinson 5. OrthogonalRationalFunctions,AdhemarBultheel,PabloGonza´lez-Vera, ErikHendiksen,andOlavNja˚stad 6. TheTheoryofComposites,GraemeW.Milton 7. GeometryandTopologyforMeshGenerationHerbertEdelsbrunner 8. Schwarz–ChristoffelMappingTofinA.DriscollandLloydN.Trefethen 9. High-Order Methods for Incompressible Fluid Flow, M. O. Deville, P. F. FischerandE.H.Mund 10. PracticalExtrapolationMethods,AvramSidi 11. Generalized Riemann Problems in Computational Fluid Dynamics, MataniaBen-ArtziandJosephFalcovitz 12. RadialBasisFunctions:TheoryandImplementations,MartinBuhmann 13. IterativeKrylovMethodsforLargeLinearSystems,HenkA.vanderVorst 14. Simulating Hamiltonian Dynamics, Benedict Leimkuhler and Sebastian Reich 15. Collocation Methods for Volterra Integral and Related Functional Equations,HermannBrunner 16. TopologyforComputing,AfraJ.Zomorodian 17. ScatteredDataApproximation,HolgerWendland Matrix Preconditioning Techniques and Applications KE CHEN ReaderinMathematics DepartmentofMathematicalSciences TheUniversityofLiverpool    Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press TheEdinburghBuilding,Cambridge,UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridg e.org /9780521838283 © Cambridge University Press 2005 Thispublicationisincopyright.Subjecttostatutoryexceptionandtotheprovisionof relevantcollectivelicensingagreements,noreproductionofanypartmaytakeplace without the written permission of Cambridge University Press. Firstpublishedinprintformat 2005 - ---- eBook (NetLibrary) - --- eBook (NetLibrary) - ---- hardback - --- hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyofs forexternalorthird-partyinternetwebsitesreferredtointhispublication,anddoesnot guaranteethatanycontentonsuchwebsitesis,orwillremain,accurateorappropriate. MATLAB® isatrademarkofTheMathWorks,Inc.andisusedwithpermission.The MathWorksdoesnotwarranttheaccuracyofthetextorexercisesinthisbook.This book’s use or discussion of MATLAB® software or related products does not constitute endorsementorsponsorshipbyTheMathWorksofaparticularpedagogicalapproachor particular use of the MATLAB® software. Dedicatedto ZhuangandLeoLingYi andthelovingmemoriesofmylateparentsWan-QingandWen-Fang Indecidingwhattoinvestigate,howtoformulateideasandwhatproblems tofocuson,theindividualmathematicianhastobeguidedultimatelyby theirownsenseofvalues.Therearenoclearrules,orratherifyouonly followoldrulesyoudonotcreateanythingworthwhile. SirMichaelAtiyah(FRS,FieldsMedallist1966).What’sitall about?UKEPSRCNewslineJournal–Mathematics(2001) Contents Preface pagexiii Nomenclature xxi 1 Introduction 1 1.1 Directanditerativesolvers,typesofpreconditioning 2 1.2 Normsandconditionnumber 4 1.3 Perturbationtheoriesforlinearsystemsandeigenvalues 9 1.4 TheArnoldiiterationsanddecomposition 11 1.5 Clusteringcharacterization,fieldofvaluesand (cid:1)-pseudospectrum 16 1.6 FastFouriertransformsandfastwavelettransforms 19 1.7 Numericalsolutiontechniquesforpracticalequations 41 1.8 Commontheoriesonpreconditionedsystems 61 1.9 GuidetosoftwaredevelopmentandthesuppliedMfiles 62 2 Directmethods 66 2.1 TheLUdecompositionandvariants 68 2.2 TheNewton–Schulz–Hotellingmethod 75 2.3 TheGauss–Jordandecompositionandvariants 76 2.4 TheQRdecomposition 82 2.5 Specialmatricesandtheirdirectinversion 85 2.6 Orderingalgorithmsforbettersparsity 100 2.7 DiscussionofsoftwareandthesuppliedMfiles 106 3 Iterativemethods 110 3.1 Solutioncomplexityandexpectations 111 3.2 Introductiontoresidualcorrection 112 3.3 Classicaliterativemethods 113 3.4 Theconjugategradientmethod:theSPDcase 119 vii viii Contents 3.5 Theconjugategradientnormalmethod:theunsymmetriccase 130 3.6 Thegeneralizedminimalresidualmethod:GMRES 133 3.7 TheGMRESalgorithmincomplexarithmetic 141 3.8 Matrixfreeiterativesolvers:thefastmultipolemethods 144 3.9 DiscussionofsoftwareandthesuppliedMfiles 162 4 Matrixsplittingpreconditioners[T1]:directapproximation of An×n 165 4.1 Bandedpreconditioner 166 4.2 Bandedarrowpreconditioner 167 4.3 BlockarrowpreconditionerfromDDMordering 168 4.4 Triangularpreconditioners 171 4.5 ILUpreconditioners 172 4.6 Fastcirculantpreconditioners 176 4.7 Singularoperatorsplittingpreconditioners 182 4.8 Preconditioningthefastmultipolemethod 185 4.9 Numericalexperiments 186 4.10 DiscussionofsoftwareandthesuppliedMfiles 187 5 Approximateinversepreconditioners[T2]:direct approximationof A−1 191 n×n 5.1 Howtocharacterize A−1intermsof A 192 5.2 Bandedpreconditioner 195 5.3 Polynomialpreconditioner p (A) 195 k 5.4 Generalandadaptivesparseapproximateinverses 199 5.5 AINVtypepreconditioner 211 5.6 Multi-stagepreconditioners 213 5.7 Thedualtoleranceself-preconditioningmethod 224 5.8 Nearneighboursplittingforsingularintegralequations 227 5.9 Numericalexperiments 237 5.10 DiscussionofsoftwareandthesuppliedMfiles 238 6 Multilevelmethodsandpreconditioners[T3]:coarsegrid approximation 240 6.1 MultigridmethodforlinearPDEs 241 6.2 MultigridmethodfornonlinearPDEs 259 6.3 Multigridmethodforlinearintegralequations 263 6.4 Algebraicmultigridmethods 270 6.5 Multileveldomaindecompositionpreconditionersfor GMRES 279 6.6 DiscussionofsoftwareandthesuppliedMfiles 286 Contents ix 7 MultilevelrecursiveSchurcomplements preconditioners[T4] 289 7.1 Multilevelfunctionalpartition:AMLIapproximatedSchur 290 7.2 Multilevelgeometricalpartition:exactSchur 295 7.3 Multilevelalgebraicpartition:permutation-basedSchur 300 7.4 Appendix:theFEMhierarchicalbasis 305 7.5 DiscussionofsoftwareandthesuppliedMfiles 309 8 Sparsewaveletpreconditioners[T5]:approximation of A˜n×n and A˜−n×1n 310 8.1 Introductiontomultiresolutionandorthogonalwavelets 311 8.2 Operatorcompressionbywaveletsandsparsitypatterns 320 8.3 BandWSPAIpreconditioner 323 8.4 NewcenteringWSPAIpreconditioner 325 8.5 Optimalimplementationsandwaveletquadratures 335 8.6 Numericalresults 336 8.7 DiscussionofsoftwareandthesuppliedMfiles 338 9 WaveletSchurpreconditioners[T6] 340 9.1 Introduction 341 9.2 Waveletstelescopicsplittingofanoperator 342 9.3 AnexactSchurpreconditionerwithlevel-by-levelwavelets 346 9.4 Anapproximatepreconditionerwithlevel-by-levelwavelets 352 9.5 Someanalysisandnumericalexperiments 357 9.6 DiscussionoftheaccompaniedMfiles 363 10 Implicitwaveletpreconditioners[T7] 364 10.1 Introduction 365 10.2 Wavelet-basedsparseapproximateinverse 368 10.3 Animplicitwaveletsparseapproximateinverse preconditioner 369 10.4 Implementationdetails 371 10.5 Denseproblems 374 10.6 Sometheoreticalresults 376 10.7 Combinationwithalevel-onepreconditioner 379 10.8 Numericalresults 380 10.9 DiscussionofthesuppliedMfile 381 11 ApplicationI:acousticscatteringmodelling 383 11.1 TheboundaryintegralequationsfortheHelmholtzequationin R3anditerativesolution 384 11.2 ThelowwavenumbercaseofaHelmholtzequation 397

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.