ebook img

Matrices: Theory and Applications PDF

291 Pages·2010·3.906 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Matrices: Theory and Applications

Graduate Texts in Mathematics 216 Editorial Board S. Axler K.A. Ribet For other titles in this series, go to http://www.springer.com/series/136 Denis Serre Matrices Theory and Applications Second Edition 1 C Denis Serre Unité de Mathématiques Pures et Appliquées École Normale Supérieure de Lyon 69364 Lyon Cedex 07 France [email protected] Editorial Board: S. Axler K. A. Ribet Mathematics Department Mathematics Department San Francisco State University University of California at Berkeley San Francisco, CA 94132 Berkeley, CA 94720 USA USA [email protected] [email protected] ISSN 0072-5285 ISBN 978-1-4419-7682-6 e-ISBN 978-1-4419-7683-3 DOI 10.1007/978-1-4419-7683-3 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010938321 Mathematics Subject Classification (2010): 15-XX, 22-XX, 47-XX, 65-XX © Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connec- tion with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) ToPascale,Fanny,Paul,andJoachim Contents PrefacefortheSecondEdition ....................................... xi PrefacefortheFirstEdition ......................................... xiii 1 ElementaryLinearandMultilinearAlgebra ...................... 1 1.1 VectorsandScalars ......................................... 1 1.2 LinearMaps............................................... 5 1.3 BilinearMaps ............................................. 9 2 WhatAreMatrices............................................. 15 2.1 Introduction ............................................... 15 2.2 MatricesasLinearMaps..................................... 19 2.3 MatricesandBilinearForms ................................. 28 3 SquareMatrices ............................................... 31 3.1 Determinant ............................................... 31 3.2 Minors ................................................... 34 3.3 Invertibility ............................................... 38 3.4 EigenvaluesandEigenvectors ................................ 42 3.5 TheCharacteristicPolynomial................................ 43 3.6 Diagonalization ............................................ 48 3.7 Trigonalization............................................. 49 3.8 Rank-OnePerturbations ..................................... 52 3.9 AlternateMatricesandthePfaffian............................ 54 3.10 CalculatingtheCharacteristicPolynomial ...................... 56 3.11 IrreducibleMatrices ........................................ 59 4 TensorandExteriorProducts ................................... 69 4.1 TensorProductofVectorSpaces.............................. 69 4.2 ExteriorCalculus........................................... 72 4.3 TensorizationofLinearMaps ................................ 77 4.4 APolynomialIdentityinM (K).............................. 78 n vii viii Contents 5 MatriceswithRealorComplexEntries........................... 83 5.1 SpecialMatrices ........................................... 83 5.2 EigenvaluesofReal-andComplex-ValuedMatrices.............. 86 5.3 SpectralDecompositionofNormalMatrices.................... 91 5.4 NormalandSymmetricReal-ValuedMatrices................... 92 5.5 FunctionalCalculus ........................................ 94 5.6 NumericalRange........................................... 98 5.7 TheGershgorinDomain.....................................102 6 HermitianMatrices ............................................109 6.1 TheSquareRootoverHPD .................................109 n 6.2 RayleighQuotients .........................................110 6.3 FurtherPropertiesoftheSquareRoot..........................114 6.4 SpectrumofRestrictions ....................................115 6.5 SpectrumversusDiagonal ...................................117 6.6 TheDeterminantofNonnegativeHermitianMatrices.............119 7 Norms ........................................................127 7.1 ABriefReview ............................................127 7.2 Householder’sTheorem .....................................133 7.3 AnInterpolationInequality ..................................135 7.4 VonNeumann’sInequality...................................137 8 NonnegativeMatrices ..........................................149 8.1 NonnegativeVectorsandMatrices ............................149 8.2 ThePerron–FrobeniusTheorem:WeakForm ...................150 8.3 ThePerron–FrobeniusTheorem:StrongForm ..................151 8.4 CyclicMatrices ............................................154 8.5 StochasticMatrices.........................................156 9 MatriceswithEntriesinaPrincipalIdealDomain;JordanReduction163 9.1 Rings,PrincipalIdealDomains ...............................163 9.2 InvariantFactorsofaMatrix .................................167 9.3 SimilarityInvariantsandJordanReduction .....................170 10 ExponentialofaMatrix,PolarDecomposition,andClassicalGroups 183 10.1 ThePolarDecomposition....................................183 10.2 ExponentialofaMatrix .....................................184 10.3 StructureofClassicalGroups.................................188 10.4 TheGroupsU(p,q).........................................191 10.5 TheOrthogonalGroupsO(p,q) ..............................192 10.6 TheSymplecticGroupSp ..................................195 n Contents ix 11 MatrixFactorizationsandTheirApplications .....................207 11.1 TheLU Factorization .......................................208 11.2 CholeskiFactorization ......................................213 11.3 TheQRFactorization .......................................214 11.4 SingularValueDecomposition................................216 11.5 TheMoore–PenroseGeneralizedInverse.......................218 12 IterativeMethodsforLinearSystems ............................225 12.1 AConvergenceCriterion ....................................226 12.2 BasicMethods.............................................227 12.3 TwoCasesofConvergence ..................................229 12.4 TheTridiagonalCase .......................................231 12.5 TheMethodoftheConjugateGradient.........................235 13 ApproximationofEigenvalues ...................................247 13.1 GeneralConsiderations......................................247 13.2 HessenbergMatrices........................................249 13.3 TheQRMethod............................................253 13.4 TheJacobiMethod .........................................259 13.5 ThePowerMethods ........................................266 References.........................................................277 IndexofNotations..................................................279 GeneralIndex .....................................................283 CitedNames .......................................................289 Preface for the Second Edition Itisonlyafterlongusethatanauthorrealizestheflawsandthegapsinhisorher book. Having taught from a significant part of it, having gathered more than three hundredexercisesonapublicwebsitehttp://www.umpa.ens-lyon.fr/ serre/DPF/exobis.pdf,andhavinglearnedalotwithineightyearsofread- ing after the first edition was published, I arrived at the conclusion that a second editionofMatrices:TheoryandApplicationsshouldbesignificantlydifferentfrom thefirstone. First of all, I felt ashamed of the very light presentation of the backgrounds in linear algebra and elementary matrix theory in Chapter 1. In French, I should say cen’e´taitnifait,nia` faire(neitherdone,nortobedone).Ithusbeganbyrewriting this part completely, taking this opportunity to split pure linear algebra from the introductiontomatrices.IhopethatthereaderissatisfiedwiththenewChapters1 and2below. When teaching, it was easy to recognize the lack of logical structure here and there.Forthesakeofamoreelegantpresentation,Ithereforemovedseveralstate- ments from one chapter to another. It even happened that entire sections was dis- placed,suchasthoseaboutsingularvaluedecomposition,theLeverrieralgorithm, theSchurcomplement,orthesquarerootofpositiveHermitianmatrices. Next, I realized that some important material was missing in the first edition. Thishasledmetoincreasethesizeofthisbookbyaboutfortypercent.Thenewly addedtopicsare • Dunforddecomposition • Calculuswithrank-oneperturbations • ImprovementbyPreparataandSarwateofLeverrier’salgorithmforcalculating thecharacteristicpolynomial • Tensorcalculus • PolynomialidentityofAmitsurandLevitzki • Regularityofsimpleeigenvaluesforcomplexmatrices • FunctionalcalculusandtheDunford–Taylorformula • Stableandunstablesubspaces xi xii PrefacefortheSecondEdition • Numericalrange • Weylinequalities • Concavityof(detH)1/noverHPD n • vonNeumanninequality • ConvergenceoftheJacobimethodwithrandomchoice(perhapsanewresult). Withsomanyadditions,thechapteronrealandcomplexmatricesextendedbeyond areasonablesize.Thisinturnledmetosplitit,bydedicatingaspecificchapterto thestudyofHermitianmatrices.Becausetensorcalculus,togetherwithpolynomial identities,alsoformsanewchapter,thenumberofchaptershasincreasedfromten tothirteen. The reader might wonder why I included the new fourth chapter, because it is essentially not used in the sequel. Several reasons led me to this choice. First of all,tensorandexteriorcalculusarefundamentalinspectralanalysis,indifferential geometry, in theoretical physics and many other domains. Next, I think that the theoremofAmitsurandLevitzkiisoneofthemostbeautifulinmatrixtheory,which remained mysterious until a quite direct proof using exterior algebra was found, allowing it to be presented in a graduate textbook. The presence of this result isconsistentwithmyphilosophythateverychapter,beyondtheintroductoryones, shouldcontainatleastoneadvancedstatement.Mylastmotivationwastoinclude morealgebraicissues,becauseitisapermanenttendancyofmatrixanalysistobe tooanalytic. Followingthispointofview,IshouldhavelovedtoincludeaproofofA.Horn’s conjecture, after W. Fulton, A. Klyachko, A. Knutson and T. Tao: the statement, whichhasananalyticflavorinasmuchasitconsistsininequalitiesbetweeneigen- values of Hermitian matrices, is undoubtedly a great achievement of algebraists, involving,asitdoes,representationtheoryandSchubertcalculus.However,thema- terialtobeincludedwouldhavebeenfartooadvanced.Thistheoryisstilltoofresh and will not be part of textbooks before it has been digested, and this will take perhapsafewdecades.ThusIdecidedtobecontentwithdiscussingtheWeyland Lidski˘ıinequalities,whicharethelowerstepsinHorn’slist. Eventhoughthisnewversionhadexpandedalot,Ithoughtlongandhardabout including a fundamental and beautiful (to my opinion) issue, namely Loewner’s theory of operator monotone functions. I eventually abandoned this idea because the topic would have needed too much space, thus upsetting the balance between elementaryandadvancedmaterial. Finally,Ihaveincludedmanynewexercises,manyofthemofferingawaytogo furtherintothetheoryandpractice.Thewebsitementionedaboveremainsavailable, andis expectedtogrow overtime,but thereferencesin itwillremain unchanged, in order that it may be usable by the owners of the first edition, until I feel that it absolutelyneedstoberefreshed. Lyon,France DenisSerre November2009 Preface for the First Edition The study of matrices occupies a singular place within mathematics. It is still an areaofactiveresearch,anditisusedbyeverymathematicianandbymanyscientists workinginvariousspecialities.Severalexamplesillustrateitsversatility: • Scientificcomputinglibrariesbegangrowingaroundmatrixcalculus.Asamatter offact,thediscretizationofpartialdifferentialoperatorsisanendlesssourceof linearfinite-dimensionalproblems. • Atadiscretelevel,themaximumprincipleisrelatedtononnegativematrices. • Controltheoryandstabilizationofsystemswithfinitelymanydegreesoffreedom involvespectralanalysisofmatrices. • ThediscreteFouriertransform,includingthefastFouriertransform,makesuse ofToeplitzmatrices. • Statisticsiswidelybasedoncorrelationmatrices. • Thegeneralizedinverseisinvolvedinleast-squaresapproximation. • Symmetric matrices are inertia, deformation, or viscous tensors in continuum mechanics. • Markovprocessesinvolvestochasticorbistochasticmatrices. • Graphscanbedescribedinausefulwaybysquarematrices. • Quantum chemistry is intimately related to matrix groups and their representa- tions. • The case of quantum mechanics is especially interesting. Observables are Her- mitianoperators;theireigenvaluesareenergylevels.Intheearlyyears,quantum mechanicswascalled“mechanicsofmatrices,”andithasnowgivenrisetothe development of the theory of large random matrices. See [25] for a thorough accountofthisfashionabletopic. Thistextwasconceivedduringtheyears1998–2001,ontheoccasionofacourse that I taught at the E´cole Normale Supe´rieure de Lyon. As such, every result is accompanied by a detailed proof. During this course I tried to investigate all the principalmathematicalaspectsofmatrices:algebraic,geometric,andanalytic. In some sense, this is not a specialized book. For instance, it is not as detailed as [19] concerning numerics, or as [40] on eigenvalue problems, or as [21] about xiii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.