ebook img

MathWorks Econometrics Toolbox™ User's Guide PDF

4164 Pages·2022·27.308 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview MathWorks Econometrics Toolbox™ User's Guide

Econometrics Toolbox™ User's Guide R2022b How to Contact MathWorks Latest news: www.mathworks.com Sales and services: www.mathworks.com/sales_and_services User community: www.mathworks.com/matlabcentral Technical support: www.mathworks.com/support/contact_us Phone: 508-647-7000 The MathWorks, Inc. 1 Apple Hill Drive Natick, MA 01760-2098 Econometrics Toolbox™ User's Guide © COPYRIGHT 1999–2022 by The MathWorks, Inc. The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc. FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc. Trademarks MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders. Patents MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information. Revision History October 2008 Online only Version 1.0 (Release 2008b) March 2009 Online only Revised for Version 1.1 (Release 2009a) September 2009 Online only Revised for Version 1.2 (Release 2009b) March 2010 Online only Revised for Version 1.3 (Release 2010a) September 2010 Online only Revised for Version 1.4 (Release 2010b) April 2011 Online only Revised for Version 2.0 (Release 2011a) September 2011 Online only Revised for Version 2.0.1 (Release 2011b) March 2012 Online only Revised for Version 2.1 (Release 2012a) September 2012 Online only Revised for Version 2.2 (Release 2012b) March 2013 Online only Revised for Version 2.3 (Release 2013a) September 2013 Online only Revised for Version 2.4 (Release 2013b) March 2014 Online Only Revised for Version 3.0 (Release 2014a) October 2014 Online Only Revised for Version 3.1 (Release 2014b) March 2015 Online Only Revised for Version 3.2 (Release 2015a) September 2015 Online Only Revised for Version 3.3 (Release 2015b) March 2016 Online Only Revised for Version 3.4 (Release 2016a) September 2016 Online Only Revised for Version 3.5 (Release 2016b) March 2017 Online Only Revised for Version 4.0 (Release 2017a) September 2017 Online Only Revised for Version 4.1 (Release 2017b) March 2018 Online Only Revised for Version 5.0 (Release 2018a) September 2018 Online Only Revised for Version 5.1 (Release 2018b) March 2019 Online Only Revised for Version 5.2 (Release 2019a) September 2019 Online Only Revised for Version 5.3 (Release 2019b) March 2020 Online Only Revised for Version 5.4 (Release 2020a) September 2020 Online Only Revised for Version 5.5 (Release 2020b) March 2021 Online Only Revised for Version 5.6 (Release 2021a) September 2021 Online Only Revised for Version 5.7 (Release 2021b) March 2022 Online Only Revised for Version 6.0 (Release 2022a) September 2022 Online Only Revised for Version 6.1 (Release 2022b) Contents Getting Started 1 Econometrics Toolbox Product Description . . . . . . . . . . . . . . . . . . . . . . . . 1-2 Econometric Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 Econometrics Toolbox Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 Represent Time Series Models Using Econometrics Toolbox Objects . . . . 1-7 Model Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 Model Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10 Create Model Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11 Retrieve Model Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15 Modify Model Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16 Object Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17 Stochastic Process Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18 What Is a Stochastic Process? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18 Stationary Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19 Linear Time Series Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19 Unit Root Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20 Lag Operator Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21 Characteristic Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24 Data Preprocessing 2 Data Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 Why Transform? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 Common Data Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2 Trend-Stationary vs. Difference-Stationary Processes . . . . . . . . . . . . . . . . 2-6 Nonstationary Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 Trend Stationary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 Difference Stationary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 Specify Lag Operator Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9 Lag Operator Polynomial of Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9 Difference Lag Operator Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 Nonseasonal Differencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13 v Nonseasonal and Seasonal Differencing . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 Time Series Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19 Moving Average Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21 Moving Average Trend Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22 Parametric Trend Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24 Hodrick-Prescott Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29 Use Hodrick-Prescott Filter to Reproduce Original Result . . . . . . . . . . . 2-30 Seasonal Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34 What Is a Seasonal Filter? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34 Stable Seasonal Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34 Sn × m seasonal filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35 Seasonal Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37 What Is Seasonal Adjustment? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37 Deseasonalized Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37 Seasonal Adjustment Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37 Seasonal Adjustment Using a Stable Seasonal Filter . . . . . . . . . . . . . . . . 2-39 Seasonal Adjustment Using S(n,m) Seasonal Filters . . . . . . . . . . . . . . . . 2-45 Model Selection 3 Box-Jenkins Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 Select ARIMA Model for Time Series Using Box-Jenkins Methodology . . 3-4 Autocorrelation and Partial Autocorrelation . . . . . . . . . . . . . . . . . . . . . . 3-11 What Are Autocorrelation and Partial Autocorrelation? . . . . . . . . . . . . . . 3-11 Theoretical ACF and PACF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11 Sample ACF and PACF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11 Compute Sample ACF and PACF in MATLAB® . . . . . . . . . . . . . . . . . . . . 3-12 Ljung-Box Q-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18 Detect Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20 Compute Sample ACF and PACF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20 Conduct the Ljung-Box Q-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22 Engle’s ARCH Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26 Detect ARCH Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28 Test Autocorrelation of Squared Residuals . . . . . . . . . . . . . . . . . . . . . . . 3-28 vi Contents Conduct Engle's ARCH Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-30 Unit Root Nonstationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33 What Is a Unit Root Test? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33 Modeling Unit Root Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33 Available Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-37 Testing for Unit Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-38 Unit Root Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-41 Test Simulated Data for a Unit Root . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-41 Test Time Series Data for Unit Root . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-45 Test Stock Data for a Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-48 Assess Stationarity of a Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-51 Information Criteria for Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . 3-54 Compute Information Criteria Using aicbic . . . . . . . . . . . . . . . . . . . . . . . 3-54 Model Comparison Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-58 Available Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-58 Likelihood Ratio Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-60 Lagrange Multiplier Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-60 Wald Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-60 Covariance Matrix Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-61 Conduct Lagrange Multiplier Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-62 Conduct Wald Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-65 Compare GARCH Models Using Likelihood Ratio Test . . . . . . . . . . . . . . . 3-67 Classical Model Misspecification Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-70 Check Fit of Multiplicative ARIMA Model . . . . . . . . . . . . . . . . . . . . . . . . . 3-81 Goodness of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-86 Residual Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-87 Check Residuals for Normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-87 Check Residuals for Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-87 Check Residuals for Conditional Heteroscedasticity . . . . . . . . . . . . . . . . 3-87 Assess Predictive Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-89 Nonspherical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-90 What Are Nonspherical Models? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-90 Plot a Confidence Band Using HAC Estimates . . . . . . . . . . . . . . . . . . . . . 3-91 Change the Bandwidth of a HAC Estimator . . . . . . . . . . . . . . . . . . . . . . . 3-98 Check Model Assumptions for Chow Test . . . . . . . . . . . . . . . . . . . . . . . . 3-104 Power of the Chow Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-110 vii Econometric Modeler 4 Analyze Time Series Data Using Econometric Modeler . . . . . . . . . . . . . . . 4-2 Prepare Data for Econometric Modeler App . . . . . . . . . . . . . . . . . . . . . . . 4-3 Import Time Series Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4 Perform Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 Fitting Models to Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15 Conducting Goodness-of-Fit Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-30 Finding Model with Best In-Sample Fit . . . . . . . . . . . . . . . . . . . . . . . . . . 4-36 Export Session Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-38 Specifying Univariate Lag Operator Polynomials Interactively . . . . . . . . 4-44 Specify Lag Structure Using Lag Order Tab . . . . . . . . . . . . . . . . . . . . . . 4-45 Specify Lag Structure Using Lag Vector Tab . . . . . . . . . . . . . . . . . . . . . . 4-47 Specifying Multivariate Lag Operator Polynomials and Coefficient Constraints Interactively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-50 Specify Lag Structure Using Lag Order Tab . . . . . . . . . . . . . . . . . . . . . . 4-51 Specify Lag Structure Using Lag Vector Tab . . . . . . . . . . . . . . . . . . . . . . 4-52 Specify Coefficient Matrix Equality Constraints for Estimation . . . . . . . . 4-54 Prepare Time Series Data for Econometric Modeler App . . . . . . . . . . . . 4-59 Prepare Table of Multivariate Data for Import . . . . . . . . . . . . . . . . . . . . . 4-59 Prepare Numeric Vector for Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-60 Import Time Series Data into Econometric Modeler App . . . . . . . . . . . . 4-62 Import Data from MATLAB Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . 4-62 Import Data from MAT-File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-63 Plot Time Series Data Using Econometric Modeler App . . . . . . . . . . . . . 4-66 Plot Univariate Time Series Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-66 Plot Multivariate Time Series and Correlations . . . . . . . . . . . . . . . . . . . . 4-67 Detect Serial Correlation Using Econometric Modeler App . . . . . . . . . . 4-71 Plot ACF and PACF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-71 Conduct Ljung-Box Q-Test for Significant Autocorrelation . . . . . . . . . . . . 4-73 Detect ARCH Effects Using Econometric Modeler App . . . . . . . . . . . . . . 4-77 Inspect Correlograms of Squared Residuals for ARCH Effects . . . . . . . . . 4-77 Conduct Ljung-Box Q-Test on Squared Residuals . . . . . . . . . . . . . . . . . . 4-80 Conduct Engle's ARCH Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-82 Assess Stationarity of Time Series Using Econometric Modeler . . . . . . . 4-84 Test Assuming Unit Root Null Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-84 Test Assuming Stationary Null Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-87 Test Assuming Random Walk Null Model . . . . . . . . . . . . . . . . . . . . . . . . 4-90 Assess Collinearity Among Multiple Series Using Econometric Modeler App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-94 Transform Time Series Using Econometric Modeler App . . . . . . . . . . . . 4-97 Apply Log Transformation to Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-97 Stabilize Time Series Using Nonseasonal Differencing . . . . . . . . . . . . . 4-101 viii Contents Convert Prices to Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-104 Remove Seasonal Trend from Time Series Using Seasonal Difference . . 4-107 Remove Deterministic Trend from Time Series . . . . . . . . . . . . . . . . . . . 4-109 Implement Box-Jenkins Model Selection and Estimation Using Econometric Modeler App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-112 Select ARCH Lags for GARCH Model Using Econometric Modeler App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-122 Estimate Multiplicative ARIMA Model Using Econometric Modeler App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-131 Perform ARIMA Model Residual Diagnostics Using Econometric Modeler App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-141 Specify t Innovation Distribution Using Econometric Modeler App . . . 4-150 Estimate Vector Autoregression Model Using Econometric Modeler . . 4-155 Conduct Cointegration Test Using Econometric Modeler . . . . . . . . . . . 4-170 Estimate Vector Error-Correction Model Using Econometric Modeler 4-180 Compare Predictive Performance After Creating Models Using Econometric Modeler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-193 Estimate ARIMAX Model Using Econometric Modeler App . . . . . . . . . . 4-200 Estimate Regression Model with ARMA Errors Using Econometric Modeler App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-208 Compare Conditional Variance Model Fit Statistics Using Econometric Modeler App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-221 Perform GARCH Model Residual Diagnostics Using Econometric Modeler App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-230 Share Results of Econometric Modeler App Session . . . . . . . . . . . . . . . 4-237 Time Series Regression Models 5 Time Series Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 Regression Models with Time Series Errors . . . . . . . . . . . . . . . . . . . . . . . . 5-5 What Are Regression Models with Time Series Errors? . . . . . . . . . . . . . . . 5-5 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 Create Regression Models with ARIMA Errors . . . . . . . . . . . . . . . . . . . . . . 5-8 Default Regression Model with ARIMA Errors Specifications . . . . . . . . . . 5-8 ix Specify regARIMA Models Using Name-Value Pair Arguments . . . . . . . . . . 5-9 Specify Linear Regression Models Using Econometric Modeler App . . . . 5-15 Specify the Default Regression Model with ARIMA Errors . . . . . . . . . . . 5-19 Modify regARIMA Model Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21 Modify Properties Using Dot Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21 Nonmodifiable Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-23 Create Regression Models with AR Errors . . . . . . . . . . . . . . . . . . . . . . . . 5-26 Default Regression Model with AR Errors . . . . . . . . . . . . . . . . . . . . . . . . 5-26 AR Error Model Without an Intercept . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-27 AR Error Model with Nonconsecutive Lags . . . . . . . . . . . . . . . . . . . . . . . 5-27 Known Parameter Values for a Regression Model with AR Errors . . . . . . 5-28 Regression Model with AR Errors and t Innovations . . . . . . . . . . . . . . . . 5-29 Create Regression Models with MA Errors . . . . . . . . . . . . . . . . . . . . . . . . 5-31 Default Regression Model with MA Errors . . . . . . . . . . . . . . . . . . . . . . . 5-31 MA Error Model Without an Intercept . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-32 MA Error Model with Nonconsecutive Lags . . . . . . . . . . . . . . . . . . . . . . 5-32 Known Parameter Values for a Regression Model with MA Errors . . . . . . 5-33 Regression Model with MA Errors and t Innovations . . . . . . . . . . . . . . . . 5-34 Create Regression Models with ARMA Errors . . . . . . . . . . . . . . . . . . . . . . 5-36 Default Regression Model with ARMA Errors . . . . . . . . . . . . . . . . . . . . . 5-36 ARMA Error Model Without an Intercept . . . . . . . . . . . . . . . . . . . . . . . . 5-37 ARMA Error Model with Nonconsecutive Lags . . . . . . . . . . . . . . . . . . . . 5-37 Known Parameter Values for a Regression Model with ARMA Errors . . . . 5-38 Regression Model with ARMA Errors and t Innovations . . . . . . . . . . . . . 5-38 Specify Regression Model with ARMA Errors Using Econometric Modeler App . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-40 Create Regression Models with ARIMA Errors . . . . . . . . . . . . . . . . . . . . . 5-44 Default Regression Model with ARIMA Errors . . . . . . . . . . . . . . . . . . . . . 5-44 ARIMA Error Model Without an Intercept . . . . . . . . . . . . . . . . . . . . . . . . 5-45 ARIMA Error Model with Nonconsecutive Lags . . . . . . . . . . . . . . . . . . . . 5-45 Known Parameter Values for a Regression Model with ARIMA Errors . . . 5-46 Regression Model with ARIMA Errors and t Innovations . . . . . . . . . . . . . 5-47 Create Regression Models with SARIMA Errors . . . . . . . . . . . . . . . . . . . . 5-49 SARMA Error Model Without an Intercept . . . . . . . . . . . . . . . . . . . . . . . 5-49 Known Parameter Values for a Regression Model with SARIMA Errors . . 5-50 Regression Model with SARIMA Errors and t Innovations . . . . . . . . . . . . 5-50 Specify Regression Model with SARIMA Errors . . . . . . . . . . . . . . . . . . . . 5-53 Specify ARIMA Error Model Innovation Distribution . . . . . . . . . . . . . . . . 5-59 About the Innovation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-59 Innovation Distribution Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-60 Specify Innovation Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-60 Impulse Response of Regression Models with ARIMA Errors . . . . . . . . . 5-64 Plot Impulse Response of Regression Model with ARIMA Errors . . . . . . 5-65 Regression Model with AR Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-65 x Contents

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.