ebook img

Mathematics for the Environment PDF

669 Pages·2011·3.651 MB·English
by  WalterMartin
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematics for the Environment

MATHEMATICS FOR THE ENVIRONMENT MATHEMATICS FOR THE ENVIRONMENT MARTIN WALTER University of Colorado Boulder, Colorado, USA Chapman & Hall/CRC Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2011 by MartyWalterMath.com LLC Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-13: 978-1-4398-3473-2 (Ebook-PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information stor- age or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copy- right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro- vides licenses and registration for a variety of users. For organizations that have been granted a pho- tocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Dedication I dedicate this book to the memory of Judson “Sandy” Sanderson, to Baby Lorax, and to the Joy of my life. Contents List of Tables xiii List of Figures xv Why Did I Write This Book? xvii Reading, Learning and/or Teaching from This Book xxi Acknowledgments xxv I Mathematics Is Connected to Everything 1 1 Earth’s Climate and Some Basic Principles 3 1.1 One of the Greatest Crimes of the 20th Century . . . . . . . 3 1.2 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Edison’s Algorithm: Listening to Nature’s Feedback . . . . . 5 1.4 Fuzzy Logic, Filters, the Bigger Picture Principle . . . . . . 8 1.5 Consequences of the Crime: Suburbia’s Topology . . . . . . 12 1.6 A Toxic Consequence of the Crime . . . . . . . . . . . . . . . 14 1.7 Hubbert’s Peak and the End of Cheap Oil . . . . . . . . . . 16 1.8 Resource Wars: Oil and Water . . . . . . . . . . . . . . . . . 20 1.9 The CO Greenhouse Law of Svante Arrhenius . . . . . . . . 21 2 2 Economic Instability: Ongoing Causes 31 2.1 Necessary Conditions for Economic Success . . . . . . . . . . 32 2.2 The Mathematical Structure of Ponzi Schemes . . . . . . . . 34 2.3 Dishonest Assessment of Risk . . . . . . . . . . . . . . . . . 37 2.4 One Reason Why Usury Should Again Be Illegal . . . . . . . 42 3 What Is Mathematics? More Basics 45 3.1 The Definition of Mathematics Used in This Book . . . . . . 45 3.2 The Logic of Nature and the Logic of Civilization . . . . . . 47 3.3 Box-Flow Models . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4 Cycles and Scales in Nature and Mathematics . . . . . . . . 55 3.5 The Art of Estimating . . . . . . . . . . . . . . . . . . . . . . 67 v vi Contents 4 We All Soak in a Synthetic Chemical Soup 73 4.1 Thomas Latimer’s Unfortunate Experience . . . . . . . . . . 73 4.2 What’s in the Synthetic Chemical Soup? . . . . . . . . . . . 75 4.3 Synthetic Flows and Assumptions . . . . . . . . . . . . . . . 79 4.4 The Flow of Information about Synthetic Flows . . . . . . . 82 4.5 You Cannot Do Just One Thing: Two Examples . . . . . . . 90 5 Mathematics: Food, Soil, Water, Air, Free Speech 99 5.1 The “Hour Glass” Industrial Agriculture Machine . . . . . . 99 5.2 Industrial Agriculture Logic vs. the Logic of Life . . . . . . . 103 5.3 Fast Foods, Few Foods, and Fossil Fuels . . . . . . . . . . . . 108 5.4 Genetic Engineering: One Mathematical Perspective . . . . . 113 5.5 Toxic Sludge Is Good for You! . . . . . . . . . . . . . . . . . 125 5.6 Media Concentration . . . . . . . . . . . . . . . . . . . . . . 131 5.7 Oceans: Rising Acidity and Disappearing Life . . . . . . . . 131 5.8 Stocks, Flows and Distributions of Food . . . . . . . . . . . . 138 5.9 My Definition of Food . . . . . . . . . . . . . . . . . . . . . . 143 5.10 Choices: Central vs. Diverse Decision Making . . . . . . . . 143 5.11 Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6 Mathematics and Energy 151 6.1 How Much Solar Energy Is There? . . . . . . . . . . . . . . . 151 6.2 Solar Energy Is There, Do We Know How to Get It? . . . . 154 6.3 Four Falsehoods . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.4 Nuclear Power: Is It Too Cheap to Meter? . . . . . . . . . . 161 6.5 Net Primary Productivity and EcologicalFootprints . . . . . 165 6.6 NPP, Soil, Biofuels, and the Super Grid . . . . . . . . . . . . 166 7 The Brower–Cousteau Model of the Earth 173 7.1 How Heavily Do We Weigh upon the Earth? . . . . . . . . . 173 7.2 Mining and Damming: Massive Rearrangements . . . . . . . 174 7.3 Fish, Forests, Deserts, and Soil: Revisited . . . . . . . . . . . 176 7.4 The Brower–CousteauEarth Model . . . . . . . . . . . . . . 180 8 Fuzzy Logic, Sharp Logic, Frames, and Bigger Pictures 187 8.1 Sharp (Aristotelian) Logic: A Standard Syllogism . . . . . . 187 8.2 Measuring Truth Values: Fuzzy/Measured Logic . . . . . . . 188 8.3 Definitions, Assumptions and the Frame of Debate . . . . . . 193 8.4 Humans in Denial–Nature Cannot be Fooled–Gravity Exists 195 8.5 The Bigger Picture Principle . . . . . . . . . . . . . . . . . . 198 9 The Dunbar Number 203 9.1 The Sustainability Hypothesis: Is It True? . . . . . . . . . . 203 9.2 The Dunbar Number . . . . . . . . . . . . . . . . . . . . . . 204 Contents vii 9.3 Public Relations, Political Power, and the Organization of So- ciety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 9.4 Political Uses of Fear . . . . . . . . . . . . . . . . . . . . . . 214 9.5 Confronting Fear (and Apathy): Organizing Your Community for Self-Preservationand Sustainability . . . . . . . . . . . . 217 II Math and Nature: The Nature of Math 223 10 One Pattern Viewed via Geometry and Numbers: Mathese 225 10.1 The Square Numbers of Pythagoras . . . . . . . . . . . . . . 225 10.2 The Language of Mathematics: Mathese . . . . . . . . . . . 228 10.3 AGeneralExpressioninMathese: AFormulaforOddNumbers 228 10.4 An Important Word in Mathese: Σ . . . . . . . . . . . . . . 229 10.5 Sentences in Mathese: Equations with Σ and a Dummy Vari- able . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 10.6 Induction,Deduction,MathematicalResearch,andMathemat- ical Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 10.7 What Is a Mathematical Proof? . . . . . . . . . . . . . . . . 232 10.8 What Is a Deductive System? . . . . . . . . . . . . . . . . . 234 10.9 Originalidad es volver al Origen . . . . . . . . . . . . . . . . 234 11 Axioms and Atoms 237 11.1 Molecules and Atoms; the Atomic Number and the Atomic Mass Number of an Atom . . . . . . . . . . . . . . . . . . . . 237 11.2 Scaling and Our First Two Axioms for Numbers . . . . . . . 239 11.3 Our First Axiom for Numbers . . . . . . . . . . . . . . . . . 240 11.4 Number 1: Its Definition, Properties, Uniqueness . . . . . . . 241 11.5 The Definition of Multiplicative Inverse . . . . . . . . . . . . 242 11.6 Our Second Axiom for Numbers . . . . . . . . . . . . . . . . 243 11.7 If ... , Then ... . Our First Proofs . . . . . . . . . . . . . . 244 11.8 Return to the Problem: How Many Protons in One Gram of Protons? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 11.9 What Is a Mole? Scaling Up from the Atomic to the Human Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 12 Five More Axioms for Numbers 255 12.1 Associativity, Identity, and Inverses for + . . . . . . . . . . . 256 12.2 Commutativity of + and ∗ . . . . . . . . . . . . . . . . . . . 257 12.3 Distributivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 13 What Patterns Can Be Deduced in Our Deductive System? 261 13.1 Playing the Mathematics Game . . . . . . . . . . . . . . . . 261 13.2 Rules for Playing the Mathematics Game . . . . . . . . . . . 262 13.3 The Usual Rules for Fractions Are Partof Our Deductive Sys- tem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.