ebook img

Mathematics for Electrical Engineering and Computing PDF

562 Pages·2003·6.73 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematics for Electrical Engineering and Computing

TLFeBOOK Mathematics for Electrical Engineering and Computing TLFeBOOK “fm” — 2003/6/8 — page i — #1 TLFeBOOK “fm” — 2003/6/8 — page ii — #2 Mathematics for Electrical Engineering and Computing Mary Attenborough AMSTERDAM BOSTON LONDON HEIDELBERG NEWYORK OXFORD PARIS SANDIEGO SANFRANCISCO SINGAPORE SYDNEY TOKYO TLFeBOOK “fm” — 2003/6/9 — page iii — #3 Newnes AnimprintofElsevier LinacreHouse,JordanHill,OxfordOX28DP 200WheelerRoad,BurlingtonMA01803 Firstpublished2003 Copyright©2003,MaryAttenborough.Allrightsreserved TherightofMaryAttenboroughtobeidentifiedastheauthorofthiswork hasbeenassertedinaccordancewiththeCopyright,Designsand PatentsAct1988 Nopartofthispublicationmaybereproducedinanymaterialform(including photocopyingorstoringinanymediumbyelectronicmeansandwhether ornottransientlyorincidentallytosomeotheruseofthispublication)without thewrittenpermissionofthecopyrightholderexceptinaccordancewiththe provisionsoftheCopyright,DesignsandPatentsAct1988orunderthetermsof alicenceissuedbytheCopyrightLicensingAgencyLtd,90TottenhamCourt Road,London,EnglandW1T4LP.Applicationsforthecopyrightholder’swritten permissiontoreproduceanypartofthispublicationshouldbeaddressed tothepublisher PermissionsmaybesoughtdirectlyfromElsevier’sScienceand TechnologyRightsDepartmentinOxford,UK:phone:(+44)(0)1865843830; fax:(+44)(0)1865853333;e-mail:[email protected]. Youmayalsocompleteyourrequeston-lineviatheElsevierhomepage (http://www.elsevier.com),byselecting‘CustomerSupport’andthen ‘ObtainingPermissions’ BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheLibraryofCongress ISBN075065855X ForinformationonallNewnespublications visitourwebsiteatwww.newnespress.com TypesetbyNewgenImagingSystems(P)Ltd,Chennai,India PrintedandboundinGreatBritain TLFeBOOK “fm” — 2003/6/8 — page iv — #4 Contents Preface xi Acknowledgements xii Part1 Sets,functions,andcalculus 1 Setsandfunctions 3 1.1 Introduction 3 1.2 Sets 4 1.3 Operationsonsets 5 1.4 Relationsandfunctions 7 1.5 Combiningfunctions 17 1.6 Summary 23 1.7 Exercises 24 2 Functionsandtheirgraphs 26 2.1 Introduction 26 2.2 Thestraightline:y =mx+c 26 2.3 Thequadraticfunction:y =ax2+bx+c 32 2.4 Thefunctiony =1/x 33 2.5 Thefunctionsy =ax 33 2.6 Graphsketchingusingsimple transformations 35 2.7 Themodulusfunction,y =|x|or y =abs(x) 41 2.8 Symmetryoffunctionsandtheirgraphs 42 2.9 Solvinginequalities 43 2.10 Usinggraphstofindanexpressionforthefunction fromexperimentaldata 50 2.11 Summary 54 2.12 Exercises 55 3 Problemsolvingandtheartoftheconvincing argument 57 3.1 Introduction 57 3.2 Describingaprobleminmathematical language 59 3.3 Propositionsandpredicates 61 3.4 Operationsonpropositionsandpredicates 62 3.5 Equivalence 64 3.6 Implication 67 3.7 Makingsweepingstatements 70 TLFeBOOK “fm” — 2003/6/8 — page v — #5 vi Contents 3.8 Otherapplicationsofpredicates 72 3.9 Summary 73 3.10 Exercises 74 4 Booleanalgebra 76 4.1 Introduction 76 4.2 Algebra 76 4.3 Booleanalgebras 77 4.4 Digitalcircuits 81 4.5 Summary 86 4.6 Exercises 86 5 Trigonometricfunctionsandwaves 88 5.1 Introduction 88 5.2 Trigonometricfunctionsandradians 88 5.3 Graphsandimportantproperties 91 5.4 Wavefunctionsoftimeanddistance 97 5.5 Trigonometricidentities 103 5.6 Superposition 107 5.7 Inversetrigonometricfunctions 109 5.8 Solvingthetrigonometricequationssinx =a, cosx =a,tanx =a 110 5.9 Summary 111 5.10 Exercises 113 6 Differentiation 116 6.1 Introduction 116 6.2 Theaveragerateofchangeandthegradientofa chord 117 6.3 Thederivativefunction 118 6.4 Somecommonderivatives 120 6.5 Findingthederivativeofcombinationsof functions 122 6.6 Applicationsofdifferentiation 128 6.7 Summary 130 6.9 Exercises 131 7 Integration 132 7.1 Introduction 132 7.2 Integration 132 7.3 Findingintegrals 133 7.4 Applicationsofintegration 145 7.5 Thedefiniteintegral 147 7.6 Themeanvalueandr.m.s.value 155 7.7 NumericalMethodsofIntegration 156 7.8 Summary 159 7.9 Exercises 160 8 Theexponentialfunction 162 8.1 Introduction 162 8.2 Exponentialgrowthanddecay 162 8.3 Theexponentialfunctiony =et 166 8.4 Thehyperbolicfunctions 173 8.5 Moredifferentiationandintegration 180 8.6 Summary 186 8.7 Exercises 187 TLFeBOOK “fm” — 2003/6/8 — page vi — #6 Contents vii 9 Vectors 188 9.1 Introduction 188 9.2 Vectorsandvectorquantities 189 9.3 Additionandsubtractionofvectors 191 9.4 Magnitudeanddirectionofa2Dvector–polar co-ordinates 192 9.5 Applicationofvectorstorepresentwaves (phasors) 195 9.6 Multiplicationofavectorbyascalarandunit vectors 197 9.7 Basisvectors 198 9.8 Productsofvectors 198 9.9 Vectorequationofaline 202 9.10 Summary 203 9.12 Exercises 205 10 Complexnumbers 206 10.1 Introduction 206 10.2 Phasorrotationbyπ/2 206 10.3 Complexnumbersandoperations 207 10.4 Solutionofquadraticequations 212 10.5 Polarformofacomplexnumber 215 10.6 ApplicationsofcomplexnumberstoAClinear circuits 218 10.7 Circularmotion 219 10.8 Theimportanceofbeingexponential 226 10.9 Summary 232 10.10 Exercises 235 11 Maximaandminimaandsketchingfunctions 237 11.1 Introduction 237 11.2 Stationarypoints,localmaximaand minima 237 11.3 Graphsketchingbyanalysingthefunction behaviour 244 11.4 Summary 251 11.5 Exercises 252 12 Sequencesandseries 254 12.1 Introduction 254 12.2 Sequencesandseriesdefinitions 254 12.3 Arithmeticprogression 259 12.4 Geometricprogression 262 12.5 Pascal’striangleandthebinomialseries 267 12.6 Powerseries 272 12.7 Limitsandconvergence 282 12.8 Newton–Raphsonmethodforsolving equations 283 12.9 Summary 287 12.10 Exercises 289 TLFeBOOK “fm” — 2003/6/8 — page vii — #7 viii Contents Part2 Systems 13 Systemsoflinearequations,matrices,and determinants 295 13.1 Introduction 295 13.2 Matrices 295 13.3 Transformations 306 13.4 Systemsofequations 314 13.5 Gausselimination 324 13.6 Theinverseanddeterminantofa3×3 matrix 330 13.7 Eigenvectorsandeigenvalues 335 13.8 Leastsquaresdatafitting 338 13.9 Summary 342 13.10 Exercises 343 14 Differentialequationsanddifferenceequations 346 14.1 Introduction 346 14.2 Modellingsimplesystems 347 14.3 Ordinarydifferentialequations 352 14.4 Solvingfirst-orderLTIsystems 358 14.5 Solutionofasecond-orderLTIsystems 363 14.6 Solvingsystemsofdifferentialequations 372 14.7 Differenceequations 376 14.8 Summary 378 14.9 Exercises 380 15 Laplaceandztransforms 382 15.1 Introduction 382 15.2 TheLaplacetransform–definition 382 15.3 Theunitstepfunctionandthe(impulse)delta function 384 15.4 Laplacetransformsofsimplefunctionsand propertiesofthetransform 386 15.5 Solvinglineardifferentialequationswithconstant coefficients 394 15.6 Laplacetransformsandsystemstheory 397 15.7 ztransforms 403 15.8 Solvinglineardifferenceequationswithconstant coefficientsusingztransforms 408 15.9 ztransformsandsystemstheory 411 15.10 Summary 414 15.11 Exercises 415 16 Fourierseries 418 16.1 Introduction 418 16.2 PeriodicFunctions 418 16.3 Sineandcosineseries 419 16.4 Fourierseriesofsymmetricperiodic functions 424 16.5 AmplitudeandphaserepresentationofaFourier series 426 16.6 Fourierseriesincomplexform 428 16.7 Summary 430 16.8 Exercises 431 TLFeBOOK “fm” — 2003/6/8 — page viii — #8 Contents ix Part3 Functionsofmorethanonevariable 17 Functionsofmorethanonevariable 435 17.1 Introduction 435 17.2 Functionsoftwovariables–surfaces 435 17.3 Partialdifferentiation 436 17.4 Changingvariables–thechainrule 438 17.5 Thetotalderivativealongapath 440 17.6 Higher-orderpartialderivatives 443 17.7 Summary 444 17.8 Exercises 445 18 Vectorcalculus 446 18.1 Introduction 446 18.2 Thegradientofascalarfield 446 18.3 Differentiatingvectorfields 449 18.4 Thescalarlineintegral 451 18.5 Surfaceintegrals 454 18.6 Summary 456 18.7 Exercises 457 Part4 Graphandlanguagetheory 19 Graphtheory 461 19.1 Introduction 461 19.2 Definitions 461 19.3 Matrixrepresentationofagraph 465 19.4 Trees 465 19.5 Theshortestpathproblem 468 19.6 Networksandmaximumflow 471 19.7 Statetransitiondiagrams 474 19.8 Summary 476 19.9 Exercises 477 20 Languagetheory 479 20.1 Introduction 479 20.2 Languagesandgrammars 480 20.3 Derivationsandderivationtrees 483 20.4 ExtendedBackus-NaurForm(EBNF) 485 20.5 Extensiblemarkuplanguage(XML) 487 20.6 Summary 489 20.7 Exercises 489 Part5 Probabilityandstatistics 21 Probabilityandstatistics 493 21.1 Introduction 493 21.2 Populationandsample,representationofdata,mean, varianceandstandarddeviation 494 21.3 Randomsystemsandprobability 501 21.4 Additionlawofprobability 505 21.5 Repeatedtrials,outcomes,and probabilities 508 21.6 Repeatedtrialsandprobabilitytrees 508 TLFeBOOK “fm” — 2003/6/8 — page ix — #9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.