ebook img

Mathematics and Methodology for Economics: Applications, Problems and Solutions PDF

644 Pages·2016·9.495 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematics and Methodology for Economics: Applications, Problems and Solutions

Springer Texts in Business and Economics Wolfgang Eichhorn Winfried Gleißner Mathematics and Methodology for Economics Applications, Problems and Solutions Springer Texts in Business and Economics Moreinformationaboutthisseriesathttp://www.springer.com/series/10099 Wolfgang Eichhorn • Winfried Gleißner Mathematics and Methodology for Economics Applications, Problems and Solutions 123 WolfgangEichhorn WinfriedGleißner KarlsruheInstituteofTechnology(KIT) UniversityofAppliedSciencesLandshut Karlsruhe,Germany Landshut,Germany ISSN2192-4333 ISSN2192-4341 (electronic) SpringerTextsinBusinessandEconomics ISBN978-3-319-23352-9 ISBN978-3-319-23353-6 (eBook) DOI10.1007/978-3-319-23353-6 LibraryofCongressControlNumber:2016932103 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com) Preface This book about mathematics and methodologyfor economicsis the result of the lifelong teaching experience of the authors. It is written for university students as well as for students of a university of applied sciences. It is completely self- containedanddoesnotassumeanypreviousknowledgeofhighschoolmathematics. At the end of all chapters and sections, there are exercises such that the reader can test how familiar she or he is with the material of the preceding stuff. After each set of exercises, the answers are given to encourage the reader to tackle the problems. The idea to write such a book was born in 1990 during an international meeting on functional equations which took place at the University of Graz, Austria. At this meeting a lot of fascinating applications of functional equations to solve mathematically formulated economic problems inspired János Aczél, DistinguishedProfessorofMathematics,UniversityofWaterloo,Ontario,Canada: He proposed to one of us (W.E.) to start such an adventure in a form of a textbookforbeginners.Sincethenhesupportedthetentativestepsintothisdirection by a great wealth of brilliant scientific advices. Later on he became for both of us the lodestar for our endeavour. Dear János, we owe you a great debt of gratitude. For a basic course Chaps.1 (sets, vectors, trigonometric functions, complex numbers), 3 (mappings and functions), 4 (vectors, matrices, systems of linear equations),6(functions,limits,derivations),7(importantnonlinearfunctions),and 10 (integration) are sufficient. If a later course will discuss discrete models of economics,Chap.12(differenceequations)shouldbecovered,too.Forcontinuous models,Chap.11(differentialequations)isnecessary.(However,wedecidednotto goveryfarintodetails.) Chapter 2 gives an introduction to linear optimisation and game theory using productionsystems. These ideasare continuedin Chaps.5 and9, which discusses the notion of a Nash Equilibrium. Chapter 8 deals with nonlinear optimisa- tion. Chapter13,astheconclusion,reflectsmethodologicallymostofallthatwhatwe optimisticallyofferedinChaps.1,2,3,4,5,6,7,8,9,10,11and12. v vi Preface ManythanksgotoThomasSchlinkfortypingmostofthemanuscriptinLATEX very conscientiously and to Dr. Roland Peyrer for his inspiring drawings, which weretransformedtoPSTricks,anadditionalpackageforgraphicsinLatex. Karlsruhe,Germany WolfgangEichhorn Landshut,Germany WinfriedGleißner Summer,2015 Contents 1 Sets,NumbersandVectors ................................................ 1 1.1 Introduction......................................................... 1 1.2 Basics................................................................ 1 1.2.1 Exercises................................................... 7 1.2.2 Answers.................................................... 7 1.3 Subsets,OperationsBetweenSets ................................. 8 1.3.1 Exercises................................................... 11 1.3.2 Answers ................................................... 12 1.4 CartesianProductsofSets,Rn,Vectors ........................... 12 1.4.1 Exercises................................................... 18 1.4.2 Answers ................................................... 19 1.5 Operations for Vectors, Linear Dependence andIndependence................................................... 19 1.5.1 Sums,Differences,LinearCombinationsofVectors.... 19 1.5.2 LinearDependence,Independence....................... 21 1.5.3 InnerProduct.............................................. 24 1.5.4 Exercises................................................... 25 1.5.5 Answers ................................................... 26 1.6 GeometricInterpretations.Distance.OrthogonalVectors ........ 26 1.6.1 Exercises................................................... 30 1.6.2 Answers ................................................... 30 1.7 Complex Numbers;the Cosine, Sine, Tangent andCotangent ...................................................... 31 1.7.1 MultiplicationofComplexNumbers..................... 31 1.7.2 TrigonometricFormofComplexNumbers; Sine,Cosine ............................................... 34 1.7.3 DivisionofComplexNumbers;Equations............... 40 1.7.4 Tangent,Cotangent........................................ 42 1.7.5 Exercises................................................... 43 1.7.6 Answers ................................................... 43 vii viii Contents 2 ProductionSystemsProductionProcesses,Technologies, Efficiency,Optimisation ................................................... 45 2.1 Introduction......................................................... 45 2.2 Basics................................................................ 46 2.2.1 Exercises................................................... 49 2.2.2 Answers ................................................... 49 2.3 LinearProductionModels,LinearOptimisationProblems....... 49 2.3.1 Exercises................................................... 52 2.3.2 Answers ................................................... 53 2.4 SimpleApproachestoLinearOptimisationProblems............ 53 2.4.1 Exercises................................................... 59 2.4.2 Answers ................................................... 60 3 Mappings,Functions....................................................... 61 3.1 Introduction......................................................... 61 3.2 Basics. Domains, Ranges, Images (Codomains). Mappings (Binary Relations), Functions,Injections,Surjections,Bijections.Graphs............ 63 3.2.1 Exercises................................................... 72 3.2.2 Answers ................................................... 72 3.3 FunctionsofnVariables,n-DimensionalIntervals, CompositionofFunctions.......................................... 73 3.3.1 Exercises................................................... 77 3.3.2 Answers.................................................... 78 3.4 MonotonicandLinearlyHomogeneousFunctions. MaximaandMinima................................................ 78 3.4.1 Exercises................................................... 84 3.4.2 Answers ................................................... 85 3.5 Convex(Concave)Functions.ConvexSets........................ 85 3.5.1 Exercises................................................... 92 3.5.2 Answers ................................................... 92 3.6 Quasi-convexFunctions............................................ 93 3.6.1 Exercises................................................... 99 3.6.2 Answers ................................................... 100 3.7 Functionsinthe“StatisticalTheory”ofPriceIndices ............ 100 3.7.1 Exercises................................................... 103 3.7.2 Answers ................................................... 104 4 Affine and Linear Functions and Transformations (Matrices),LinearEconomicModels,SystemsofLinear EquationsandInequalities ................................................ 105 4.1 Introduction......................................................... 105 4.2 Proportionality,Linear and Affine Functions. Additivity,LinearHomogeneity,Linearity........................ 107 4.2.1 Exercises................................................... 112 4.2.2 Answers.................................................... 113 Contents ix 4.3 Additivity, Linear Homogeneity, Linearity ofVector-VectorFunctions,Matrices.............................. 113 4.3.1 Exercises .................................................. 117 4.3.2 Answers.................................................... 117 4.4 MatrixAlgebra...................................................... 118 4.4.1 Exercises .................................................. 124 4.4.2 Answers.................................................... 125 4.5 LinearEconomicModels:Leontief,vonNeumann............... 126 4.5.1 Exercises................................................... 133 4.5.2 Answers.................................................... 134 4.6 Systems of Linear Equations. Solution byElimination.Rank.NecessaryandSufficientConditions ..... 135 4.6.1 Exercises................................................... 154 4.6.2 Answers.................................................... 155 4.7 Determinant,Cramer’sRule,InverseMatrix...................... 156 4.7.1 Exercises................................................... 164 4.7.2 Answers.................................................... 165 4.8 Applicationsof Functionsof Vector Variables: AggregationinEconomics ......................................... 165 4.8.1 Exercises................................................... 174 4.8.2 Answers.................................................... 176 5 LinearOptimisation,Duality:Zero-SumGames....................... 177 5.1 Introduction......................................................... 177 5.2 LinearOptimisationProblems ..................................... 179 5.2.1 Exercises................................................... 192 5.2.2 Answers.................................................... 192 5.3 Duality............................................................... 194 5.3.1 Exercises................................................... 200 5.3.2 Answers.................................................... 201 5.4 Two-PersonZero-SumGames ..................................... 201 5.4.1 Exercises................................................... 207 5.4.2 Answers.................................................... 207 6 Functions,TheirLimitsandTheirDerivatives ......................... 209 6.1 Introduction......................................................... 209 6.2 Limits,InfinityasLimit,LimitatInfinity,Sequences: TrigonometricFunctions,Polynomials,RationalFunctions...... 211 6.2.1 Exercises................................................... 220 6.2.2 Answers.................................................... 221 6.3 Continuity,SectionalContinuity,LeftandRightLimits.......... 221 6.3.1 Exercises .................................................. 226 6.3.2 Answers ................................................... 227 6.4 Derivative,Derivation .............................................. 227 6.4.1 Exercises .................................................. 233 6.4.2 Answers ................................................... 234

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.