ebook img

Mathematical Statistics With Applications. PDF

849 Pages·2009·4.8 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Statistics With Applications.

Mathematical Statistics with Applications ELSEVIER science & technology books Companion Web Site: http://www.elsevierdirect.com/companions/9780123748485 Mathematical Statistics with Applications by Kandethody M. Ramachandran and Chris P. Tsokos Resources for Professors: • All figures from the book available as PowerPoint slides and as jpegs. • Links to Web sites carefully chosen to supplement the content of the textbook. • Online Student Solutions Manual is now available through separate purchase. • Also available with purchase of Mathematical Statistics with Applications, password protected and activated upon registration, online Instructors’ Solutions Manual. TOOLS ALL YOUR TEACHING NEEDS FOR textbooks.elsevier.com ACADEMIC PRESS To adopt this book for course use, visit http://textbooks.elsevier.com Mathematical Statistics with Applications KandethodyM.Ramachandran DepartmentofMathematicsandStatistics UniversityofSouthFlorida Tampa,FL ChrisP.Tsokos DepartmentofMathematicsandStatistics UniversityofSouthFlorida Tampa,FL AMSTERDAM•BOSTON•HEIDELBERG•LONDON NEWYORK•OXFORD•PARIS•SANDIEGO SANFRANCISCO•SINGAPORE•SYDNEY•TOKYO AcademicPressisanimprintofElsevier ElsevierAcademicPress 30CorporateDrive,Suite400,Burlington,MA01803,USA 525BStreet,Suite1900,SanDiego,California92101-4495,USA 84Theobald’sRoad,LondonWC1X8RR,UK (cid:3) Thisbookisprintedonacid-freepaper. ∞ Copyright©2009,ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopy,recording,oranyinformationstorageandretrievalsystem,without permissioninwritingfromthepublisher. PermissionsmaybesoughtdirectlyfromElsevier’sScience&TechnologyRightsDepartmentinOxford,UK: phone:(+44)1865843830,fax:(+44)1865853333,E-mail:[email protected] completeyourrequeston-lineviatheElsevierhomepage(http://elsevier.com),byselecting“Customer Support”andthen“ObtainingPermissions.” LibraryofCongressCataloging-in-PublicationData Ramachandran,K.M. Mathematicalstatisticswithapplications/KandethodyM.Ramachandran,ChrisP.Tsokos. p.cm. ISBN978-0-12-374848-5(hardcover:alk.paper) 1.Mathematicalstatistics.2.Mathematical statistics—Dataprocessing.I.Tsokos,ChrisP.II.Title. QA276.R3282009 519.5–dc22 2008044556 BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN13:978-0-12-374848-5 ForallinformationonallElsevierAcademicPresspublications visitourWebsiteatwww.elsevierdirect.com PrintedintheUnitedStatesofAmerica 09 10 9 8 7 6 5 4 3 2 1 Dedicated to our families: Usha, Vikas, Vilas, and Varsha Ramachandran and Debbie, Matthew, Jonathan, and Maria Tsokos Thispageintentionallyleftblank Contents Preface................................................................................................... xv Acknowledgments ...................................................................................... xix AbouttheAuthors....................................................................................... xxi FlowChart ..............................................................................................xxiii CHAPTER 1 DescriptiveStatistics............................................................. 1 1.1 Introduction...................................................................... 2 1.1.1 DataCollection......................................................... 3 1.2 BasicConcepts .................................................................. 3 1.2.1 TypesofData........................................................... 5 1.3 SamplingSchemes .............................................................. 8 1.3.1 ErrorsinSampleData.................................................. 11 1.3.2 SampleSize............................................................. 12 1.4 GraphicalRepresentationofData .............................................. 13 1.5 NumericalDescriptionofData ................................................. 26 1.5.1 NumericalMeasuresforGroupedData............................... 30 1.5.2 BoxPlots ............................................................... 33 1.6 ComputersandStatistics........................................................ 39 1.7 ChapterSummary ............................................................... 40 1.8 ComputerExamples............................................................. 41 1.8.1 MinitabExamples...................................................... 41 1.8.2 SPSSExamples ........................................................ 46 1.8.3 SASExamples.......................................................... 47 ProjectsforChapter1................................................................ 51 CHAPTER 2 BasicConceptsfromProbabilityTheory .......................................... 53 2.1 Introduction...................................................................... 54 2.2 RandomEventsandProbability ................................................ 55 2.3 CountingTechniquesandCalculationofProbabilities........................ 63 2.4 TheConditionalProbability,Independence,andBayes’Rule ................ 71 2.5 RandomVariablesandProbabilityDistributions .............................. 83 2.6 MomentsandMoment-GeneratingFunctions ................................. 92 2.6.1 SkewnessandKurtosis................................................. 98 2.7 ChapterSummary ............................................................... 107 2.8 ComputerExamples(Optional)................................................. 108 2.8.1 MinitabComputations ................................................. 109 2.8.2 SPSSExamples ........................................................ 110 2.8.3 SASExamples.......................................................... 110 ProjectsforChapter2................................................................ 112 vii viii Contents CHAPTER 3 AdditionalTopicsinProbability .................................................. 113 3.1 Introduction...................................................................... 114 3.2 SpecialDistributionFunctions.................................................. 114 3.2.1 TheBinomialProbabilityDistribution................................ 114 3.2.2 PoissonProbabilityDistribution....................................... 119 3.2.3 UniformProbabilityDistribution...................................... 122 3.2.4 NormalProbabilityDistribution....................................... 125 3.2.5 GammaProbabilityDistribution ...................................... 131 3.3 JointProbabilityDistributions.................................................. 141 3.3.1 CovarianceandCorrelation............................................ 148 3.4 FunctionsofRandomVariables................................................. 154 3.4.1 MethodofDistributionFunctions..................................... 154 3.4.2 ThepdfofY =g(X),WheregIsDifferentiableandMonotone IncreasingorDecreasing............................................... 156 3.4.3 ProbabilityIntegralTransformation................................... 157 3.4.4 FunctionsofSeveralRandomVariables:MethodofDistribution Functions ............................................................... 158 3.4.5 TransformationMethod................................................ 159 3.5 LimitTheorems.................................................................. 163 3.6 ChapterSummary ............................................................... 173 3.7 ComputerExamples(Optional)................................................. 175 3.7.1 MinitabExamples...................................................... 175 3.7.2 SPSSExamples ........................................................ 177 3.7.3 SASExamples.......................................................... 178 ProjectsforChapter3................................................................ 180 CHAPTER 4 SamplingDistributions ..........................................................183 4.1 Introduction...................................................................... 184 4.1.1 FinitePopulation....................................................... 187 4.2 SamplingDistributionsAssociatedwithNormalPopulations................. 191 4.2.1 Chi-SquareDistribution................................................ 192 4.2.2 Studentt-Distribution.................................................. 198 4.2.3 F-Distribution .......................................................... 202 4.3 OrderStatistics .................................................................. 207 4.4 LargeSampleApproximations.................................................. 212 4.4.1 TheNormalApproximationtotheBinomialDistribution ........... 213 4.5 ChapterSummary ............................................................... 218 4.6 ComputerExamples............................................................. 219 4.6.1 MinitabExamples...................................................... 219 4.6.2 SPSSExamples ........................................................ 219 4.6.3 SASExamples.......................................................... 219 ProjectsforChapter4................................................................ 221 Contents ix CHAPTER 5 PointEstimation.................................................................225 5.1 Introduction...................................................................... 226 5.2 TheMethodofMoments........................................................ 227 5.3 TheMethodofMaximumLikelihood.......................................... 235 5.4 SomeDesirablePropertiesofPointEstimators................................ 246 5.4.1 UnbiasedEstimators ................................................... 247 5.4.2 Sufficiency.............................................................. 252 5.5 OtherDesirablePropertiesofaPointEstimator............................... 266 5.5.1 Consistency............................................................. 266 5.5.2 Efficiency............................................................... 270 5.5.3 MinimalSufficiencyandMinimum-VarianceUnbiased Estimation .............................................................. 277 5.6 ChapterSummary ............................................................... 282 5.7 ComputerExamples............................................................. 283 ProjectsforChapter5................................................................ 285 CHAPTER 6 IntervalEstimation .............................................................. 291 6.1 Introduction...................................................................... 292 6.1.1 AMethodofFindingtheConfidenceInterval:PivotalMethod...... 293 6.2 LargeSampleConfidenceIntervals:OneSampleCase ....................... 300 6.2.1 ConfidenceIntervalforProportion,p ................................. 302 6.2.2 MarginofErrorandSampleSize ..................................... 303 6.3 SmallSampleConfidenceIntervalsforμ...................................... 310 6.4 AConfidenceIntervalforthePopulationVariance ............................ 315 6.5 ConfidenceIntervalConcerningTwoPopulationParameters................. 321 6.6 ChapterSummary ............................................................... 330 6.7 ComputerExamples............................................................. 330 6.7.1 MinitabExamples...................................................... 330 6.7.2 SPSSExamples ........................................................ 332 6.7.3 SASExamples.......................................................... 333 ProjectsforChapter6................................................................ 334 CHAPTER 7 HypothesisTesting...............................................................337 7.1 Introduction...................................................................... 338 7.1.1 SampleSize............................................................. 346 7.2 TheNeyman–PearsonLemma.................................................. 349 7.3 LikelihoodRatioTests .......................................................... 355 7.4 HypothesesforaSingleParameter............................................. 361 7.4.1 Thep-Value............................................................. 361 7.4.2 HypothesisTestingforaSingleParameter............................ 363

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.