ebook img

Mathematical Statistics PDF

676 Pages·2018·8.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Statistics

Mathematical Statistics Mathematical Statistics Dieter Rasch University of Natural Resources and Life Sciences, Institute of Applied Statistics and Computing Vienna, Austria Dieter Schott Faculty of Engineering, Hochschule Wismar, University of Applied Sciences: Technology, Business and Design Wismar, Germany Thiseditionfirstpublished2018 ©2018JohnWiley&SonsLtd Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfrom thistitleisavailableathttp://www.wiley.com/go/permissions. TherightofDieterRaschandDieterSchotttobeidentifiedastheauthorsofthisworkhasbeen assertedinaccordancewithlaw. RegisteredOffices JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK EditorialOffice 9600GarsingtonRoad,Oxford,OX42DQ,UK Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWiley productsvisitusatwww.wiley.com. Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Some contentthatappearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats. LimitofLiability/DisclaimerofWarranty Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymake norepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthis workandspecificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarranties ofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextended bysalesrepresentatives,writtensalesmaterialsorpromotionalstatementsforthiswork.Thefact thatanorganization,website,orproductisreferredtointhisworkasacitationand/orpotential sourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsetheinformation orservicestheorganization,website,orproductmayprovideorrecommendationsitmaymake. Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessional services.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.You shouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethatwebsites listedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenit isread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercial damages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages. LibraryofCongressCataloging-in-PublicationData Names:Rasch,Dieter,author.|Schott,Dieter,author. Title:Mathematicalstatistics/byDieterRasch,DieterSchott. Description:Hoboken,NJ:JohnWiley&Sons,2018.|Includes bibliographicalreferencesandindex.| Identifiers:LCCN2017039506(print)|LCCN2017046479(ebook)|ISBN 9781119385264(pdf)|ISBN9781119385233(epub)|ISBN9781119385288(cloth) Subjects: LCSH:Mathematicalstatistics. Classification:LCCQA276(ebook)|LCCQA276.R3622018(print)|DDC 519.5–dc23 LCrecordavailableathttps://lccn.loc.gov/2017039506 Coverdesign:Wiley Coverimage:(Background)©XavierAntoinet/EyeEm/GettyImages; (Graph)DensityFunctionsoftheEstimatoroftheLocationParameterμ DependingontheHypothesisValuesμ=0andμ=2,respectively. CourtesyofDieterRaschandDieterSchott Setin10/12ptWarnockbySPiGlobal,Pondicherry,India 10 9 8 7 6 5 4 3 2 1 v Contents Preface xiii 1 BasicIdeasofMathematicalStatistics 1 1.1 Statistical Population and Samples 2 1.1.1 Concrete Samples and Statistical Populations 2 1.1.2 SamplingProcedures 4 1.2 Mathematical Models forPopulation and Sample 8 1.3 Sufficiency and Completeness 9 1.4 The Notion of Information inStatistics 20 1.5 Statistical Decision Theory 28 1.6 Exercises 32 References 37 2 PointEstimation 39 2.1 Optimal UnbiasedEstimators 41 2.2 Variance-Invariant Estimation 53 2.3 Methodsfor Construction and Improvement of Estimators 57 2.3.1 Maximum Likelihood Method 57 2.3.2 Least Squares Method 60 2.3.3 MinimumChi-Squared Method 61 2.3.4 Methodof Moments 62 2.3.5 Jackknife Estimators 63 2.3.6 Estimators Based on Order Statistics 64 2.3.6.1 Order and Rank Statistics 64 2.3.6.2 L-Estimators 66 2.3.6.3 M-Estimators 67 2.3.6.4 R-Estimators 68 2.4 Properties of Estimators 68 2.4.1 Small Samples 69 vi Contents 2.4.2 Asymptotic Properties 71 2.5 Exercises 75 References 78 3 StatisticalTestsandConfidenceEstimations 79 3.1 Basic Ideas of Test Theory 79 3.2 The Neyman–Pearson Lemma 87 3.3 Tests forComposite Alternative Hypotheses and One-Parametric Distribution Families 96 3.3.1 Distributions with Monotone Likelihood Ratio and Uniformly Most Powerful Tests for One-Sided Hypotheses 96 3.3.2 UMPU-Tests for Two-Sided Alternative Hypotheses 105 3.4 Tests forMulti-Parametric Distribution Families 110 3.4.1 General Theory 111 3.4.2 The Two-SampleProblem: Properties of Various Tests and Robustness 124 3.4.2.1 Comparison of Two Expectations 125 3.4.3 Comparison of Two Variances 137 3.4.4 Table for Sample Sizes 138 3.5 Confidence Estimation 139 3.5.1 One-Sided Confidence Intervals inOne-Parametric Distribution Families 140 3.5.2 Two-Sided Confidence Intervals inOne-Parametric and Confidence Intervals in Multi-Parametric Distribution Families 143 3.5.3 Table for Sample Sizes 146 3.6 Sequential Tests 147 3.6.1 Introduction 147 3.6.2 Wald’s Sequential Likelihood Ratio Test for One-Parametric Exponential Families 149 3.6.3 Test about Mean Values for Unknown Variances 153 3.6.4 Approximate Tests for the Two-Sample Problem 158 3.6.5 Sequential Triangular Tests 160 3.6.6 A Sequential Triangular Test for the Correlation Coefficient 162 3.7 Remarks about Interpretation 169 3.8 Exercises 170 References 176 4 LinearModels–GeneralTheory 179 4.1 Linear Models with Fixed Effects 179 4.1.1 Least Squares Method 180 4.1.2 Maximum Likelihood Method 184 Contents vii 4.1.3 Tests of Hypotheses 185 4.1.4 Construction of Confidence Regions 190 4.1.5 Special Linear Models 191 4.1.6 The Generalised Least Squares Method(GLSM) 198 4.2 Linear Models with Random Effects: Mixed Models 199 4.2.1 Best Linear UnbiasedPrediction (BLUP) 200 4.2.2 Estimation of Variance Components 202 4.3 Exercises 203 References 204 5 AnalysisofVariance(ANOVA)–FixedEffectsModels(ModelIof AnalysisofVariance) 207 5.1 Introduction 207 5.2 Analysis of Variance with One Factor (Simple- or One-Way Analysis of Variance) 215 5.2.1 The Model and the Analysis 215 5.2.2 Planning the Size of anExperiment 228 5.2.2.1 General Description for All Sections of This Chapter 228 5.2.2.2 The Experimental Size for the One-Way Classification 231 5.3 Two-Way Analysis of Variance 232 5.3.1 Cross-Classification (A×B) 233 5.3.1.1 Parameter Estimation 236 5.3.1.2 TestingHypotheses 244 5.3.2 Nested Classification (A B) 260 5.4 Three-Way Classification 272 5.4.1 Complete Cross-Classification (A×B×C) 272 5.4.2 Nested Classification (C≺B≺A) 279 5.4.3 MixedClassification 282 5.4.3.1 Cross-Classification betweenTwo Factors Where One of Them Is Subordinatedto a Third Factor B≺A ×C 282 5.4.3.2 Cross-Classification of Two Factors inWhich a Third Factor Is Nested C≺ A×B 288 5.5 Exercises 291 References 291 6 AnalysisofVariance:EstimationofVarianceComponents (ModelIIoftheAnalysisofVariance) 293 6.1 Introduction: Linear Models with Random Effects 293 6.2 One-Way Classification 297 6.2.1 Estimation of Variance Components 300 6.2.1.1 Analysis of Variance Method 300 viii Contents 6.2.1.2 Estimators in Case of Normally Distributed Y 302 6.2.1.3 REML Estimation 304 6.2.1.4 Matrix Norm Minimising Quadratic Estimation 305 6.2.1.5 Comparison of Several Estimators 306 6.2.2 Tests of Hypotheses and Confidence Intervals 308 6.2.3 Variances and Properties of the Estimators of the Variance Components 310 6.3 Estimators of Variance Components in the Two-Way and Three-Way Classification 315 6.3.1 General Description for Equal and Unequal Subclass Numbers 315 6.3.2 Two-Way Cross-Classification 319 6.3.3 Two-Way Nested Classification 324 6.3.4 Three-Way Cross-Classification with Equal Subclass Numbers 326 6.3.5 Three-Way Nested Classification 333 6.3.6 Three-Way Mixed Classification 335 6.4 Planning Experiments 336 6.5 Exercises 338 References 339 7 AnalysisofVariance–ModelswithFiniteLevelPopulations andMixedModels 341 7.1 Introduction: Models with Finite Level Populations 341 7.2 Rules forthe Derivation of SS,df,MS and E(MS) in Balanced ANOVA Models 343 7.3 Variance Component Estimators inMixedModels 348 7.3.1 AnExample fortheBalanced Case 349 7.3.2 The Unbalanced Case 351 7.4 Tests forFixed Effects and Variance Components 353 7.5 Variance Component Estimation and Tests of Hypotheses in Special Mixed Models 354 7.5.1 Two-Way Cross-Classification 355 7.5.2 Two-Way Nested Classification B≺A 358 7.5.2.1 Levels of A Random 360 7.5.2.2 Levels of B Random 361 7.5.3 Three-Way Cross-Classification 362 7.5.4 Three-Way Nested Classification 365 7.5.5 Three-Way Mixed Classification 368 7.5.5.1 The Type (B≺A)×C 368 7.5.5.2 The Type C≺AB 371 7.6 Exercises 374 References 374 Contents ix 8 RegressionAnalysis–LinearModelswithNon-randomRegressors (ModelIofRegressionAnalysis)andwithRandomRegressors (ModelIIofRegressionAnalysis) 377 8.1 Introduction 377 8.2 Parameter Estimation 380 8.2.1 Least Squares Method 380 8.2.2 Optimal Experimental Design 394 8.3 TestingHypotheses 397 8.4 Confidence Regions 406 8.5 Models with Random Regressors 410 8.5.1 Analysis 410 8.5.2 Experimental Designs 415 8.6 MixedModels 416 8.7 Concluding Remarks about Models of Regression Analysis 417 8.8 Exercises 419 References 419 9 RegressionAnalysis–IntrinsicallyNon-linearModelI 421 9.1 Estimating by the Least Squares Method 424 9.1.1 Gauss–Newton Method 425 9.1.2 InternalRegression 431 9.1.3 Determining Initial Values for Iteration Methods 433 9.2 GeometricalProperties 434 9.2.1 Expectation Surface and Tangent Plane 434 9.2.2 Curvature Measures 440 9.3 Asymptotic Properties and the Bias of LS Estimators 443 9.4 Confidence Estimations and Tests 447 9.4.1 Introduction 447 9.4.2 Tests and Confidence Estimations Based on the Asymptotic Covariance Matrix 451 9.4.3 Simulation Experiments to Check Asymptotic Tests and Confidence Estimations 452 9.5 Optimal Experimental Design 454 9.6 Special Regression Functions 458 9.6.1 Exponential Regression 458 9.6.1.1 Point Estimator 458 9.6.1.2 Confidence Estimations and Tests 460 9.6.1.3 Results of Simulation Experiments 463 9.6.1.4 Experimental Designs 466 9.6.2 The Bertalanffy Function 468 9.6.3 The Logistic (Three-Parametric Hyperbolic Tangent) Function 473 9.6.4 The Gompertz Function 476 x Contents 9.6.5 The Hyperbolic Tangent Function with Four Parameters 480 9.6.6 The Arc Tangent Function with Four Parameters 484 9.6.7 The Richards Function 487 9.6.8 Summarisingthe Results of Sections 9.6.1–9.6.7 487 9.6.9 Problems of Model Choice 488 9.7 Exercises 489 References 490 10 AnalysisofCovariance(ANCOVA) 495 10.1 Introduction 495 10.2 General Model I–I of the Analysis of Covariance 496 10.3 Special Models of the Analysis of Covariance forthe Simple Classification 503 10.3.1 One Covariable with Constant γ 504 10.3.2 ACovariablewithRegressionCoefficientsγ DependingontheLevels i of the Classification Factor 506 10.3.3 A Numerical Example 507 10.4 Exercises 510 References 511 11 MultipleDecisionProblems 513 11.1 Selection Procedures 514 11.1.1 Basic Ideas 514 11.1.2 Indifference Zone Formulation forExpectations 516 11.1.2.1 Selection of Populations with Normal Distribution 517 11.1.2.2 ApproximateSolutionsforNon-normalDistributionsandt=1 529 11.1.3 Selection of a Subset Containing the Best Population with Given Probability 531 11.1.3.1 Selection of the Normal Distribution with the Largest Expectation 534 11.1.3.2 Selection of the Normal Distribution with Smallest Variance 534 11.2 Multiple Comparisons 539 11.2.1 Confidence Intervals for All Contrasts: Scheffé’sMethod 542 11.2.2 Confidence Intervals for Given Contrasts: Bonferroni’s and Dunn’s Method 548 11.2.3 Confidence Intervals for All Contrasts for n =n:Tukey’s i Method 550 11.2.4 Confidence Intervals for All Contrasts: Generalised Tukey’s Method 553 11.2.5 ConfidenceIntervalsfortheDifferencesofTreatmentswithaControl: Dunnett’s Method 554 11.2.6 Multiple Comparisons and Confidence Intervals 556

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.