ebook img

Mathematical models of fluiddynamics: modelling, theory, basic numerical facts: an introduction PDF

181 Pages·2003·0.953 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical models of fluiddynamics: modelling, theory, basic numerical facts: an introduction

Rainer Ansorge Mathematical Models of Fluiddynamics Modelling,Theory,Basic Numerical Facts – An Introduction Rainer Ansorge Mathematical Models of Fluiddynamics Modelling,Theory, Basic Numerical Facts – An Introduction WILEY-VCH GmbH & Co.KGaA Author This book was carefully produced.Nevertheless, authors,editors and publisher do not warrant the Prof.Dr.Rainer Ansorge information contained therein to be free of University of Hamburg errors.Readers are advised to keep in mind thar Institute for Applied Mathematics statements,data,illustrations,procedural details or other items may inadvertently be inaccurate. With 30 figures Library of Congress Card No.:applied for British Library Cataloging-in-Publication Data: A catalogue record for this book is available from the British Library Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>. © 2003 WILEY-VCH GmbH & Co.KGaA, Weinheim All rights reserved (including those of transla- tion into other languages).No part of this book may be reproduced in any form – nor transmit- ted or translated into machine language without written permission from the publishers.Regis- tered names,trademarks,etc.used in this book, even when not specifically marked as such,are not to be considered unprotected by law. Printed in the Federal Republic of Germany Printed on acid-free paper Composition Uwe Krieg,Berlin Printing Strauss Offsetdruck GmbH, Mörlenbach Bookbinding Großbuchbinderei J.Schäffer GmbH & Co.KG,Grünstadt ISBN 3-527-40397-3 Dedicatedtomyfamilymembersandtomystudents Preface Mathematicalmodellingistheprocessofreplacingproblemsfromoutsidemathemat- icsbymathematicalproblems. Thesubsequentmathematicaltreatmentofthismodel bytheoreticaland/ornumericalproceduresworksasfollows: 1. Transition from the outer-mathematics phenomenon to a mathematical descrip- tion,whatatthesametimeleadstoatranslationofproblemsformulatedinterms oftheoriginalproblemintomathematicalproblems. This task forces the scientistor engineer who intends to use mathematicaltools to – cooperatewithexpertsworkinginthefieldtheoriginalproblembelongsto. Thus, he has to learn the language of these experts and to understand their wayofthinking(teamwork). – createortoacceptanidealizeddescriptionoftheoriginalphenomena,i.e. an a-priori-neglectionofpropertiesoftheoriginalproblemswhichareexpected tobeofnogreatrelevancewithrespecttothequestionsunderconsideration. Thesesimplificationsareusefulinordertoreducethedegreeofcomplexity ofthemodelaswellasofitsmathematicaltreatment. – identify structures within the idealized problem and to replace these struc- turesbysuitablemathematicalstructures. 2. Treatmentofthemathematicalsubstitute. Thistasknormallyrequires – independentactivityofthetheoreticallyworkingperson. – treatmentoftheproblembytoolsofmathematicaltheory. – thesolutionoftheparticularmathematicalproblemsoccuringbytheuseof these theoretical tools, i.e differential equations or integral equations, op- MathematicalModelsofFluiddynamics.RainerAnsorge Copyright(cid:1)c 2003Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:3-527-40397-3 8 Preface timal control problems or systems of algebraic equations etc. have to be solved. Oftennumericalproceduresaretheonlywaytodothisandtoanswer the particularquestionsunder considerationat leastapproximately. The er- roroftheapproximatesolutioncomparedwiththeunknownso-calledexact solutiondoes normally not reallyaffect the answer to the originalproblem, providedthatthenumericalmethodaswellasthenumericaltoolsareofsuf- ficientlyhighaccuracy. Inthiscontext,itshouldberealizedthatthequestion for an exact solution does not make sense because of the idelizations men- tioned above and since the initial data presented with the original problem normallyoriginatefromstatisticsorfromexperimentalmeasurements. 3. Retranslationoftheresults. Thequalitativeandquantitativestatementsreceivedfromthemathematicalmod- el need now to be retranslated into the language by which the original problem was formulated. This means that the results have now to be interpreted with respecttotheirreal-world-meaning. Thisprocessagainrequiresteamworkwith theexpertsfromthebeginning. 4. Modelcheckup. Afterretranslation,theresultshavetobecheckedwithrespecttotheirrelevance and accuracy, e.g. by experimental measurements. This work has to be done by the experts of the original problem. If the mathematical results coincide sufficiently well with the results of experiments stimulated by the theoretical forecasts, the mathematical part is over and a new tool to help the physicists, engineersetc. insimilarsituationsisborn. Otherwise–ifnotriviallogicalorcomputationalerrorscanbefound–themodel hastoberevised. Inthissituation,thegapbetweenmathematicalandrealresults canonlyoriginatefromtooextensiveidealizationsinthemodellingprocess. The development of mathematical models does not only stimulate new experiments anddoesnotonlyleadtoconstructive-prognostic–hencetechnical–toolsforphysi- cists or engineers but is also important from the point of view of the theory of cog- nition: Itallowstounderstandconnectionsbetweendifferentelementsoutoftheun- structuredsetofobservationsor–inotherwords–tocreatetheories. Fieldsofapplicationsofmathematicaldescriptionsarewellknownsincecenturiesin physics, engineering, also in music etc. In modern biology, medicine, philology and economymathematicalmodelsareused,too,andthisevenholdsforcertainfieldsof artslikeorientalornaments. Preface 9 Thisbookpresentsanintroductionintomodelsoffluidmechanics,leadstoimportant propertiesoffluidflowswhichcantheoreticallybederivedfromthemodelsandshows some basic ideas for the construction of effective numerical procedures. Hence, all aspectsoftheoreticalfluiddynamicsareaddressed,namelymodelling,mathematical theoryandnumericalmethods. We do not expect the reader to be familiar with a lot of experimental experiences. Theknowledgeofsomefundamentalprinciplesofphysicslikeconservationofmass, conservationofenergyetc. issufficient. Themostimportantidealizationis–contrary tothemolecularstructureofmaterials–theassumptionoffluid-continua. Concerning mathematics, it can help to understand the text more easily if the reader isacquaintedwithsomebasicelementsof – LinearAlgebra – Calculus – PartialDifferentialEquations – NumericalAnalysis – TheoryofComplexFunctions – FunctionalAnalysis. Functional Analysis does only play a role in the somewhat general theory of dis- cretizationalgorithmsin chapter6. Inthischapter,alsothequestionoftheexistence ofweakentropysolutionsoftheproblemsunderconsiderationisdiscussed. Physicsts and engineers are normally not so much interested in the treatment of this problem. Nevertheless, it had to be included into this presentation in order not to leave this questionopen. Thenon-existenceofasolutionshowsimmediatelythatamodeldoes not fit the reality if there is a measurable course of physical events. Existence theo- remsarethereforeimportantnotonlyfromthepointofviewofmathematicians. But, ofcourse,readerswhoarenotacquaintedwithsomefunctionalanalyticterminology mayskipthischapter. With respect to models and their theoretical treatment as well as with respect to nu- mericalproceduresoccuringinsections4.1,5.3,6.4andchapter7,abriefintroduction intomathematicalfluidmechanicslikethisbookcanonlypresentbasicfacts. Butthe authorhopesthatthisoverviewwillmakeyoungscientistsinterestedinthisfieldand that it can help people working in institutes and industries to become more familiar withsomefundamentalmathematicalaspects. 10 Preface Finally,Iwishtothankseveralcolleaguesforsuggestions,particularlyThomasSonar, whocontributedtochapter7whenweorganizedajointcourseforgraduatestudents1, andDr. MichaelBreuss,whoreadthemanuscriptcarefully. LastbutnotleastIthank thepublishers,especiallyDr. AlexanderGrossmann,fortheirencouragement. RainerAnsorge Hamburg,September2002 1Partsofchapters1and5aretranslationsfrompartsofsections25.1,25.2,29.9of: Ansorgeand Oberle:Mathematikfu¨rIngenieure,vol.2,2nded.,Berlin,Wiley-VCH2000. Contents Preface 7 1 IdealFluids 13 1.1 ModellingbyEuler’sEquations . . . . . . . . . . . . . . . . . . . . 13 1.2 CharacteristicsandSingularities . . . . . . . . . . . . . . . . . . . . 24 1.3 PotentialFlowsand(Dynamic)Buoyancy . . . . . . . . . . . . . . . 30 1.4 MotionlessFluidsandSoundPropagation . . . . . . . . . . . . . . . 47 2 WeakSolutionsofConservationLaws 51 2.1 GeneralizationofwhatwillbecalledaSolution . . . . . . . . . . . . 51 2.2 TrafficFlowExamplewithLossofUniqueness . . . . . . . . . . . . 56 2.3 TheRankine-HugoniotCondition . . . . . . . . . . . . . . . . . . . 62 3 EntropyConditions 69 3.1 EntropyinCaseofIdealFluids . . . . . . . . . . . . . . . . . . . . . 69 3.2 GeneralizationoftheEntropyCondition . . . . . . . . . . . . . . . . 74 3.3 UniquenessofEntropySolutions . . . . . . . . . . . . . . . . . . . . 80 3.4 TheAnsatzduetoKruzkov . . . . . . . . . . . . . . . . . . . . . . . 92 4 TheRiemannProblem 97 4.1 NumericalImportanceoftheRiemannProblem . . . . . . . . . . . . 97 4.2 TheRiemannProblemintheCaseofLinearSystems . . . . . . . . . 99 5 RealFluids 103 5.1 TheNavier-StokesEquationsModel . . . . . . . . . . . . . . . . . . 103 5.2 DragForceandtheHagen-PoiseuilleLaw . . . . . . . . . . . . . . . 111 5.3 StokesApproximationandArtificialTime . . . . . . . . . . . . . . . 116 5.4 FoundationsoftheBoundaryLayerTheory;FlowSeparation . . . . . 122 5.5 StabilityofLaminarFlows . . . . . . . . . . . . . . . . . . . . . . . 131 12 Contents 6 ExistenceProofforEntropySolutionsbyMeans ofDiscretization Procedures 135 6.1 SomeHistoricalRemarks . . . . . . . . . . . . . . . . . . . . . . . . 135 6.2 ReductiontoPropertiesofOperatorSequences . . . . . . . . . . . . 136 6.3 ConvergenceTheorems . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7 TypesofDiscretizationPrinciples 151 7.1 SomeGeneralRemarks . . . . . . . . . . . . . . . . . . . . . . . . . 151 7.2 TheFiniteDifferenceCalculus . . . . . . . . . . . . . . . . . . . . . 156 7.3 TheCFLCondition . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.4 Lax-RichtmyerTheory . . . . . . . . . . . . . . . . . . . . . . . . . 162 7.5 ThevonNeumannStabilityCriterion. . . . . . . . . . . . . . . . . . 168 7.6 TheModifiedEquation . . . . . . . . . . . . . . . . . . . . . . . . . 171 7.7 DifferenceSchemesinConservationForm . . . . . . . . . . . . . . . 173 7.8 TheFiniteVolumeMethodonUnstructuredGrids . . . . . . . . . . . 176 SomeExtensiveMonographs 181 Index 183

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.