ebook img

Mathematical Methods in Science and Engineering PDF

852 Pages·2018·7.24 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Methods in Science and Engineering

MathematicalMethodsin ScienceandEngineering Mathematical Methods in Science and Engineering SelçukS¸.Bayın InstituteofAppliedMathematics MiddleEastTechnicalUniversity AnkaraTurkey SecondEdition Thiseditionfirstpublished2018 ©2018JohnWiley&Sons,Inc. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem, ortransmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfrom thistitleisavailableathttp://www.wiley.com/go/permissions. TherightofSelçukS¸.Bayıntobeidentifiedastheauthor(s)ofthisworkhasbeenassertedin accordancewithlaw. RegisteredOffice JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWiley productsvisitusatwww.wiley.com. Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Some contentthatappearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats. LimitofLiability/DisclaimerofWarranty Thepublisherandtheauthorsmakenorepresentationsorwarrantieswithrespecttotheaccuracy orcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties;including withoutlimitationanyimpliedwarrantiesoffitnessforaparticularpurpose.Thisworkissold withtheunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.The adviceandstrategiescontainedhereinmaynotbesuitableforeverysituation.Inviewofon-going research,equipmentmodifications,changesingovernmentalregulations,andtheconstantflow ofinformationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderis urgedtoreviewandevaluatetheinformationprovidedinthepackageinsertorinstructionsfor eachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesinthe instructionsorindicationofusageandforaddedwarningsandprecautions.Thefactthatan organizationorwebsiteisreferredtointhisworkasacitationand/orpotentialsourceoffurther informationdoesnotmeanthattheauthororthepublisherendorsestheinformationthe organizationorwebsitemayprovideorrecommendationsitmaymake.Further,readersshould beawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthis workswaswrittenandwhenitisread.Nowarrantymaybecreatedorextendedbyany promotionalstatementsforthiswork.Neitherthepublishernortheauthorshallbeliableforany damagesarisingherefrom. LibraryofCongressCataloguing-in-PublicationData: Names:Bayın,S¸.Selçuk,1951-author. Title:Mathematicalmethodsinscienceandengineering/bySelçukS¸.Bayın. Description:Secondedition.|Hoboken,NJ:JohnWiley&Sons,2018.| Includesbibliographicalreferencesandindex.| Identifiers:LCCN2017042888(print)|LCCN2017048224(ebook)|ISBN 9781119425410(pdf)|ISBN9781119425458(epub)|ISBN9781119425397 (cloth) Subjects:LCSH:Mathematicalphysics–Textbooks.|Engineering mathematics–Textbooks. Classification:LCCQC20(ebook)|LCCQC20.B352018(print)|DDC 530.15–dc23 LCrecordavailableathttps://lccn.loc.gov/2017042888 CoverDesign:Wiley CoverImages:(Background)©Studio-Pro/Gettyimages; (Imageinset)CourtesyofSelcukS.Bayin Setin10/12ptWarnockProbySPiGlobal,Chennai,India PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 v Contents Preface xix 1 LegendreEquationandPolynomials 1 1.1 Second-OrderDifferentialEquationsofPhysics 1 1.2 LegendreEquation 2 1.2.1 MethodofSeparationofVariables 4 1.2.2 SeriesSolutionoftheLegendreEquation 4 1.2.3 FrobeniusMethod–Review 7 1.3 LegendrePolynomials 8 1.3.1 RodriguezFormula 10 1.3.2 GeneratingFunction 10 1.3.3 RecursionRelations 12 1.3.4 SpecialValues 12 1.3.5 SpecialIntegrals 13 1.3.6 OrthogonalityandCompleteness 14 1.3.7 AsymptoticForms 17 1.4 AssociatedLegendreEquationandPolynomials 18 1.4.1 AssociatedLegendrePolynomialsPm(x) 20 l 1.4.2 Orthogonality 21 1.4.3 RecursionRelations 22 1.4.4 IntegralRepresentations 24 1.4.5 AssociatedLegendrePolynomialsform<0 26 1.5 SphericalHarmonics 27 1.5.1 AdditionTheoremofSphericalHarmonics 30 1.5.2 RealSphericalHarmonics 33 Bibliography 33 Problems 34 2 LaguerrePolynomials 39 2.1 CentralForceProblemsinQuantumMechanics 39 2.2 LaguerreEquationandPolynomials 41 vi Contents 2.2.1 GeneratingFunction 42 2.2.2 RodriguezFormula 43 2.2.3 Orthogonality 44 2.2.4 RecursionRelations 45 2.2.5 SpecialValues 46 2.3 AssociatedLaguerreEquationandPolynomials 46 2.3.1 GeneratingFunction 48 2.3.2 RodriguezFormulaandOrthogonality 49 2.3.3 RecursionRelations 49 Bibliography 49 Problems 50 3 HermitePolynomials 53 3.1 HarmonicOscillatorinQuantumMechanics 53 3.2 HermiteEquationandPolynomials 54 3.2.1 GeneratingFunction 56 3.2.2 RodriguezFormula 56 3.2.3 RecursionRelationsandOrthogonality 57 Bibliography 61 Problems 62 4 GegenbauerandChebyshevPolynomials 65 4.1 WaveEquationonaHypersphere 65 4.2 GegenbauerEquationandPolynomials 68 4.2.1 OrthogonalityandtheGeneratingFunction 68 4.2.2 AnotherRepresentationoftheSolution 69 4.2.3 TheSecondSolution 70 4.2.4 ConnectionwiththeGegenbauerPolynomials 71 4.2.5 EvaluationoftheNormalizationConstant 72 4.3 ChebyshevEquationandPolynomials 72 4.3.1 ChebyshevPolynomialsoftheFirstKind 72 4.3.2 ChebyshevandGegenbauerPolynomials 73 4.3.3 ChebyshevPolynomialsoftheSecondKind 73 4.3.4 OrthogonalityandGeneratingFunction 74 4.3.5 AnotherDefinition 75 Bibliography 76 Problems 76 5 BesselFunctions 81 5.1 Bessel’sEquation 83 5.2 BesselFunctions 83 5.2.1 AsymptoticForms 84 5.3 ModifiedBesselFunctions 86 Contents vii 5.4 SphericalBesselFunctions 87 5.5 PropertiesofBesselFunctions 88 5.5.1 GeneratingFunction 88 5.5.2 IntegralDefinitions 89 5.5.3 RecursionRelationsoftheBesselFunctions 89 5.5.4 OrthogonalityandRootsofBesselFunctions 90 5.5.5 BoundaryConditionsfortheBesselFunctions 91 5.5.6 WronskianofPairsofSolutions 94 5.6 TransformationsofBesselFunctions 95 5.6.1 CriticalLengthofaRod 96 Bibliography 98 Problems 99 6 HypergeometricFunctions 103 6.1 HypergeometricSeries 103 6.2 HypergeometricRepresentationsofSpecialFunctions 107 6.3 ConfluentHypergeometricEquation 108 6.4 PochhammerSymbolandHypergeometricFunctions 109 6.5 ReductionofParameters 113 Bibliography 115 Problems 115 7 Sturm–LiouvilleTheory 119 7.1 Self-AdjointDifferentialOperators 119 7.2 Sturm–LiouvilleSystems 120 7.3 HermitianOperators 121 7.4 PropertiesofHermitianOperators 122 7.4.1 RealEigenvalues 122 7.4.2 OrthogonalityofEigenfunctions 123 7.4.3 CompletenessandtheExpansionTheorem 123 7.5 GeneralizedFourierSeries 125 7.6 TrigonometricFourierSeries 126 7.7 HermitianOperatorsinQuantumMechanics 127 Bibliography 129 Problems 130 8 FactorizationMethod 133 8.1 AnotherFormfortheSturm–LiouvilleEquation 133 8.2 MethodofFactorization 135 8.3 TheoryofFactorizationandtheLadderOperators 136 8.4 SolutionsviatheFactorizationMethod 141 8.4.1 CaseI(m>0and𝜇(m)isanincreasingfunction) 141 8.4.2 CaseII(m>0and𝜇(m)isadecreasingfunction) 142 viii Contents 8.5 TechniqueandtheCategoriesofFactorization 143 8.5.1 PossibleFormsfork(z,m) 143 8.5.1.1 Positivepowersofm 143 8.5.1.2 Negativepowersofm 146 8.6 AssociatedLegendreEquation(TypeA) 148 8.6.1 DeterminingtheEigenvalues,𝜆 149 l 8.6.2 ConstructionoftheEigenfunctions 150 8.6.3 LadderOperatorsform 151 8.6.4 InterpretationoftheL andL Operators 153 + − 8.6.5 LadderOperatorsforl 155 8.6.6 CompleteSetofLadderOperators 159 8.7 SchrödingerEquationandSingle-ElectronAtom(TypeF) 160 8.8 GegenbauerFunctions(TypeA) 162 8.9 SymmetricTop(TypeA) 163 8.10 BesselFunctions(TypeC) 164 8.11 HarmonicOscillator(TypeD) 165 8.12 DifferentialEquationfortheRotationMatrix 166 8.12.1 Step-Up/DownOperatorsform 166 8.12.2 Step-Up/DownOperatorsform′ 167 8.12.3 NormalizedFunctionswithm=m′ =l 168 8.12.4 FullMatrixforl=2 168 8.12.5 Step-Up/DownOperatorsforl 170 Bibliography 171 Problems 171 9 CoordinatesandTensors 175 9.1 CartesianCoordinates 175 9.1.1 AlgebraofVectors 176 9.1.2 DifferentiationofVectors 177 9.2 OrthogonalTransformations 178 9.2.1 RotationsAboutCartesianAxes 182 9.2.2 FormalPropertiesoftheRotationMatrix 183 9.2.3 EulerAnglesandArbitraryRotations 183 9.2.4 ActiveandPassiveInterpretationsofRotations 185 9.2.5 InfinitesimalTransformations 186 9.2.6 InfinitesimalTransformationsCommute 188 9.3 CartesianTensors 189 9.3.1 OperationswithCartesianTensors 190 9.3.2 TensorDensitiesorPseudotensors 191 9.4 CartesianTensorsandtheTheoryofElasticity 192 9.4.1 StrainTensor 192 9.4.2 StressTensor 193 9.4.3 ThermodynamicsandDeformations 194 Contents ix 9.4.4 ConnectionbetweenShearandStrain 196 9.4.5 Hook’sLaw 200 9.5 GeneralizedCoordinatesandGeneralTensors 201 9.5.1 ContravariantandCovariantComponents 202 9.5.2 MetricTensorandtheLineElement 203 9.5.3 GeometricInterpretationofComponents 206 9.5.4 InterpretationoftheMetricTensor 207 9.6 OperationswithGeneralTensors 214 9.6.1 EinsteinSummationConvention 214 9.6.2 ContractionofIndices 214 9.6.3 MultiplicationofTensors 214 9.6.4 TheQuotientTheorem 214 9.6.5 EqualityofTensors 215 9.6.6 TensorDensities 215 9.6.7 DifferentiationofTensors 216 9.6.8 SomeCovariantDerivatives 219 9.6.9 RiemannCurvatureTensor 220 9.7 Curvature 221 9.7.1 ParallelTransport 222 9.7.2 RoundTripsviaParallelTransport 223 9.7.3 AlgebraicPropertiesoftheCurvatureTensor 225 9.7.4 ContractionsoftheCurvatureTensor 226 9.7.5 CurvatureinnDimensions 227 9.7.6 Geodesics 229 9.7.7 InvarianceVersusCovariance 229 9.8 SpacetimeandFour-Tensors 230 9.8.1 MinkowskiSpacetime 230 9.8.2 LorentzTransformationsandSpecialRelativity 231 9.8.3 TimeDilationandLengthContraction 233 9.8.4 AdditionofVelocities 233 9.8.5 Four-TensorsinMinkowskiSpacetime 234 9.8.6 Four-Velocity 237 9.8.7 Four-MomentumandConservationLaws 238 9.8.8 MassofaMovingParticle 240 9.8.9 WaveFour-Vector 240 9.8.10 DerivativeOperatorsinSpacetime 241 9.8.11 RelativeOrientationofAxesinK andK Frames 241 9.9 Maxwell’sEquationsinMinkowskiSpacetime 243 9.9.1 TransformationofElectromagneticFields 246 9.9.2 Maxwell’sEquationsinTermsofPotentials 246 9.9.3 CovarianceofNewton’sDynamicTheory 247 Bibliography 248 Problems 249 x Contents 10 ContinuousGroupsandRepresentations 257 10.1 DefinitionofaGroup 258 10.1.1 Nomenclature 258 10.2 InfinitesimalRingorLieAlgebra 259 10.2.1 PropertiesofrG 260 10.3 LieAlgebraoftheRotationGroupR(3) 260 10.3.1 AnotherApproachtorR(3) 262 10.4 GroupInvariants 264 10.4.1 LorentzTransformations 266 10.5 UnitaryGroupinTwoDimensionsU(2) 267 10.5.1 SpecialUnitaryGroupSU(2) 269 10.5.2 LieAlgebraofSU(2) 270 10.5.3 AnotherApproachtorSU(2) 272 10.6 LorentzGroupandItsLieAlgebra 274 10.7 GroupRepresentations 279 10.7.1 Schur’sLemma 279 10.7.2 GroupCharacter 280 10.7.3 UnitaryRepresentation 280 10.8 RepresentationsofR(3) 281 10.8.1 SphericalHarmonicsandRepresentationsofR(3) 281 10.8.2 AngularMomentuminQuantumMechanics 281 10.8.3 RotationofthePhysicalSystem 282 10.8.4 RotationOperatorinTermsoftheEulerAngles 282 10.8.5 RotationOperatorintheOriginalCoordinates 283 10.8.6 EigenvalueEquationsforL ,L ,andL2 287 z ± 10.8.7 FourierExpansioninSphericalHarmonics 287 10.8.8 MatrixElementsofL ,L ,andL 289 x y z 10.8.9 RotationMatricesoftheSphericalHarmonics 290 10.8.10 Evaluationofthedl (𝛽)Matrices 292 m′m 10.8.11 Inverseofthedl (𝛽)Matrices 292 m′m 10.8.12 DifferentialEquationfordl (𝛽) 293 m′m 10.8.13 AdditionTheoremforSphericalHarmonics 296 10.8.14 DeterminationofI intheAdditionTheorem 298 l 10.8.15 ConnectionofDl (𝛽)withSphericalHarmonics 300 mm′ 10.9 IrreducibleRepresentationsofSU(2) 302 10.10 RelationofSU(2)andR(3) 303 10.11 GroupSpaces 306 10.11.1 RealVectorSpace 306 10.11.2 InnerProductSpace 307 10.11.3 Four-VectorSpace 307 10.11.4 ComplexVectorSpace 308 10.11.5 FunctionSpaceandHilbertSpace 308 10.11.6 Completeness 309 Contents xi 10.12 HilbertSpaceandQuantumMechanics 310 10.13 ContinuousGroupsandSymmetries 311 10.13.1 PointGroupsandTheirGenerators 311 10.13.2 TransformationofGeneratorsandNormalForms 312 10.13.3 TheCaseofMultipleParameters 314 10.13.4 ActionofGeneratorsonFunctions 315 10.13.5 ExtensionorProlongationofGenerators 316 10.13.6 SymmetriesofDifferentialEquations 318 Bibliography 321 Problems 322 11 ComplexVariablesandFunctions 327 11.1 ComplexAlgebra 327 11.2 ComplexFunctions 329 11.3 ComplexDerivativesandCauchy–RiemannConditions 330 11.3.1 AnalyticFunctions 330 11.3.2 HarmonicFunctions 332 11.4 Mappings 334 11.4.1 ConformalMappings 348 11.4.2 ElectrostaticsandConformalMappings 349 11.4.3 FluidMechanicsandConformalMappings 352 11.4.4 Schwarz–ChristoffelTransformations 358 Bibliography 368 Problems 368 12 ComplexIntegralsandSeries 373 12.1 ComplexIntegralTheorems 373 12.1.1 Cauchy–GoursatTheorem 373 12.1.2 CauchyIntegralTheorem 374 12.1.3 CauchyTheorem 376 12.2 TaylorSeries 378 12.3 LaurentSeries 379 12.4 ClassificationofSingularPoints 385 12.5 ResidueTheorem 386 12.6 AnalyticContinuation 389 12.7 ComplexTechniquesinTakingSomeDefiniteIntegrals 392 12.8 GammaandBetaFunctions 399 12.8.1 GammaFunction 399 12.8.2 BetaFunction 401 12.8.3 UsefulRelationsoftheGammaFunctions 403 12.8.4 IncompleteGammaandBetaFunctions 403 12.8.5 AnalyticContinuationoftheGammaFunction 404 12.9 CauchyPrincipalValueIntegral 406

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.