ebook img

Mathematical Methods in Interdisciplinary Sciences PDF

452 Pages·2020·15.585 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Methods in Interdisciplinary Sciences

(cid:2) MathematicalMethodsinInterdisciplinarySciences (cid:2) (cid:2) (cid:2) (cid:2) Mathematical Methods in Interdisciplinary Sciences Edited by Snehashish Chakraverty (cid:2) (cid:2) (cid:2) (cid:2) Thiseditionfirstpublished2020 ©2020JohnWiley&Sons,Inc. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorbyany means,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermission toreusematerialfromthistitleisavailableathttp://www.wiley.com/go/permissions. TherightofSnehashishChakravertytobeidentifiedastheauthoroftheeditorialmaterialinthisworkhasbeenassertedin accordancewithlaw. RegisteredOffice JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusatwww.wiley.com. Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappearsinstandardprint versionsofthisbookmaynotbeavailableinotherformats. LimitofLiability/DisclaimerofWarranty Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarrantieswith respecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties,includingwithout limitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedby salesrepresentatives,writtensalesmaterialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,or productisreferredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherand (cid:2) authorsendorsetheinformationorservicestheorganization,website,orproductmayprovideorrecommendationsitmaymake.This (cid:2) workissoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadviceandstrategies containedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further,readers shouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenit isread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnot limitedtospecial,incidental,consequential,orotherdamages. LibraryofCongressCataloging-in-PublicationData Names:Chakraverty,Snehashish,editor. Title:Mathematicalmethodsininterdisciplinarysciences/editedby SnehashishChakraverty. Description:Hoboken,NJ:Wiley,2020.|Includesbibliographical referencesandindex. Identifiers:LCCN2020001570(print)|LCCN2020001571(ebook)|ISBN 9781119585503(cloth)|ISBN9781119585619(adobepdf)|ISBN 9781119585657(epub) Subjects:LCSH:Science–Mathematics.|Mathematicalanalysis. Classification:LCCQ175.32.M38M382020(print)|LCCQ175.32.M38 (ebook)|DDC501/.51–dc23 LCrecordavailableathttps://lccn.loc.gov/2020001570 LCebookrecordavailableathttps://lccn.loc.gov/2020001571 CoverdesignbyWiley Coverimage:©Sharlotta/Shutterstock Setin9.5/12.5ptSTIXTwoTextbySPiGlobal,Chennai,India PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 (cid:2) (cid:2) v Contents NotesonContributors xv Preface xxv Acknowledgments xxvii 1 ConnectionistLearningModelsforApplicationProblemsInvolvingDifferential andIntegralEquations 1 SusmitaMall,SumitKumarJeswal,andSnehashishChakraverty 1.1 Introduction 1 1.1.1 ArtificialNeuralNetwork 1 1.1.2 TypesofNeuralNetworks 1 (cid:2) 1.1.3 LearninginNeuralNetwork 2 (cid:2) 1.1.4 ActivationFunction 2 1.1.4.1 SigmoidalFunction 3 1.1.5 AdvantagesofNeuralNetwork 3 1.1.6 FunctionalLinkArtificialNeuralNetwork(FLANN) 3 1.1.7 DifferentialEquations(DEs) 4 1.1.8 IntegralEquation 5 1.1.8.1 FredholmIntegralEquationofFirstKind 5 1.1.8.2 FredholmIntegralEquationofSecondKind 5 1.1.8.3 VolterraIntegralEquationofFirstKind 5 1.1.8.4 VolterraIntegralEquationofSecondKind 5 1.1.8.5 LinearFredholmIntegralEquationSystemofSecondKind 6 1.2 MethodologyforDifferentialEquations 6 1.2.1 FLANN-BasedGeneralFormulationofDifferentialEquations 6 1.2.1.1 Second-OrderInitialValueProblem 6 1.2.1.2 Second-OrderBoundaryValueProblem 7 1.2.2 ProposedLaguerreNeuralNetwork(LgNN)forDifferentialEquations 7 1.2.2.1 ArchitectureofSingle-LayerLgNNModel 7 1.2.2.2 TrainingAlgorithmofLaguerreNeuralNetwork(LgNN) 8 1.2.2.3 GradientComputationofLgNN 9 1.3 MethodologyforSolvingaSystemofFredholmIntegralEquationsofSecondKind 9 1.3.1 Algorithm 10 1.4 NumericalExamplesandDiscussion 11 1.4.1 DifferentialEquationsandApplications 11 1.4.2 IntegralEquations 16 1.5 Conclusion 20 References 20 (cid:2) (cid:2) vi Contents 2 DeepLearninginPopulationGenetics:PredictionandExplanationofSelection ofaPopulation 23 RomilaGhoshandSatyakamaPaul 2.1 Introduction 23 2.2 LiteratureReview 23 2.3 DatasetDescription 25 2.3.1 SelectionandItsImportance 25 2.4 Objective 26 2.5 RelevantTheory,Results,andDiscussions 27 2.5.1 automl 27 2.5.2 HypertuningtheBestModel 28 2.6 Conclusion 30 References 30 3 ASurveyofClassificationTechniquesinSpeechEmotionRecognition 33 TanmoyRoy,TshilidziMarwala,andSnehashishChakraverty 3.1 Introduction 33 3.2 EmotionalSpeechDatabases 33 3.3 SERFeatures 34 3.4 ClassificationTechniques 35 3.4.1 HiddenMarkovModel 36 3.4.1.1 DifficultiesinUsingHMMforSER 37 (cid:2) 3.4.2 GaussianMixtureModel 37 (cid:2) 3.4.2.1 DifficultiesinUsingGMMforSER 38 3.4.3 SupportVectorMachine 38 3.4.3.1 DifficultieswithSVM 39 3.4.4 DeepLearning 39 3.4.4.1 DrawbacksofUsingDeepLearningforSER 41 3.5 DifficultiesinSERStudies 41 3.6 Conclusion 41 References 42 4 MathematicalMethodsinDeepLearning 49 SrinivasaManikantUpadhyayulaandKannanVenkataramanan 4.1 DeepLearningUsingNeuralNetworks 49 4.2 IntroductiontoNeuralNetworks 49 4.2.1 ArtificialNeuralNetwork(ANN) 50 4.2.1.1 ActivationFunction 52 4.2.1.2 LogisticSigmoidActivationFunction 52 4.2.1.3 tanhorHyperbolicTangentActivationFunction 53 4.2.1.4 ReLU(RectifiedLinearUnit)ActivationFunction 54 4.3 OtherActivationFunctions(VariantFormsofReLU) 55 4.3.1 SmoothReLU 55 4.3.2 NoisyReLU 55 4.3.3 LeakyReLU 55 4.3.4 ParametricReLU 56 4.3.5 TrainingandOptimizingaNeuralNetworkModel 56 (cid:2) (cid:2) Contents vii 4.4 BackpropagationAlgorithm 56 4.5 PerformanceandAccuracy 59 4.6 ResultsandObservation 59 References 61 5 MultimodalDataRepresentationandProcessingBasedonAlgebraicSystemof Aggregates 63 YevgeniyaSulemaandEtienneKerre 5.1 Introduction 63 5.2 BasicStatementsofASA 64 5.3 OperationsonAggregatesandMulti-images 65 5.4 RelationsandDigitalIntervals 72 5.5 DataSynchronization 75 5.6 FuzzySynchronization 92 5.7 Conclusion 96 References 96 6 NonprobabilisticAnalysisofThermalandChemicalDiffusionProblemswithUncertain BoundedParameters 99 SukantaNayak,TharasiDilleswarRao,andSnehashishChakraverty 6.1 Introduction 99 6.2 Preliminaries 99 (cid:2) 6.2.1 IntervalArithmetic 99 (cid:2) 6.2.2 FuzzyNumberandFuzzyArithmetic 100 6.2.3 ParametricRepresentationofFuzzyNumber 101 6.2.4 FiniteDifferenceSchemesforPDEs 102 6.3 FiniteElementFormulationforTaperedFin 102 6.4 RadonDiffusionandItsMechanism 105 6.5 RadonDiffusionMechanismwithTFNParameters 107 6.5.1 EFDMtoRadonDiffusionMechanismwithTFNParameters 108 6.6 Conclusion 112 References 112 7 ArbitraryOrderDifferentialEquationswithFuzzyParameters 115 TofighAllahviranlooandSoheilSalahshour 7.1 Introduction 115 7.2 Preliminaries 115 7.3 ArbitraryOrderIntegralandDerivativeforFuzzy-ValuedFunctions 116 7.4 GeneralizedFuzzyLaplaceTransformwithRespecttoAnotherFunction 118 References 122 8 FluidDynamicsProblemsinUncertainEnvironment 125 PerumandlaKarunakar,UddhabaBiswal,andSnehashishChakraverty 8.1 Introduction 125 8.2 Preliminaries 126 8.2.1 FuzzySet 126 8.2.2 FuzzyNumber 126 (cid:2) (cid:2) viii Contents 8.2.3 𝛿-Cut 127 8.2.4 ParametricApproach 127 8.3 ProblemFormulation 127 8.4 Methodology 129 8.4.1 HomotopyPerturbationMethod 129 8.4.2 HomotopyPerturbationTransformMethod 130 8.5 ApplicationofHPMandHPTM 131 8.5.1 ApplicationofHPMtoJeffery–HamelProblem 131 8.5.2 ApplicationofHPTMtoCoupledWhitham–Broer–KaupEquations 134 8.6 ResultsandDiscussion 136 8.7 Conclusion 142 References 142 9 FuzzyRoughSetTheory-BasedFeatureSelection:AReview 145 TanmoySom,ShivamShreevastava,AnoopKumarTiwari,andShivaniSingh 9.1 Introduction 145 9.2 Preliminaries 146 9.2.1 RoughSetTheory 146 9.2.1.1 RoughSet 146 9.2.1.2 RoughSet-BasedFeatureSelection 147 9.2.2 FuzzySetTheory 147 9.2.2.1 FuzzyToleranceRelation 148 9.2.2.2 FuzzyRoughSetTheory 149 (cid:2) (cid:2) 9.2.2.3 DegreeofDependency-BasedFuzzyRoughAttributeReduction 149 9.2.2.4 DiscernibilityMatrix-BasedFuzzyRoughAttributeReduction 149 9.3 FuzzyRoughSet-BasedAttributeReduction 149 9.3.1 DegreeofDependency-BasedApproaches 150 9.3.2 DiscernibilityMatrix-BasedApproaches 154 9.4 ApproachesforSemisupervisedandUnsupervisedDecisionSystems 154 9.5 DecisionSystemswithMissingValues 158 9.6 ApplicationsinClassification,RuleExtraction,andOtherApplicationAreas 158 9.7 LimitationsofFuzzyRoughSetTheory 159 9.8 Conclusion 160 References 160 10 UniversalIntervals:TowardsaDependency-AwareIntervalAlgebra 167 HendDawoodandYasserDawood 10.1 Introduction 167 10.2 TheNeedforIntervalComputations 169 10.3 OnSomeAlgebraicandLogicalFundamentals 170 10.4 ClassicalIntervalsandtheDependencyProblem 174 10.5 IntervalDependency:ALogicalTreatment 176 10.5.1 QuantificationDependenceandSkolemization 177 10.5.2 AFormalizationoftheNotionofIntervalDependency 179 10.6 IntervalEnclosuresUnderFunctionalDependence 184 10.7 ParametricIntervals:HowFarTheyCanGo 186 10.7.1 ParametricIntervalOperations:FromEndpointstoConvexSubsets 186 10.7.2 OntheStructureofParametricIntervals:AreTheyProperlyFounded? 188 (cid:2) (cid:2) Contents ix 10.8 UniversalIntervals:AnIntervalAlgebrawithaDependencyPredicate 192 10.8.1 UniversalIntervals,RationalFunctions,andPredicates 193 10.8.2 TheArithmeticofUniversalIntervals 196 10.9 TheS-FieldAlgebraofUniversalIntervals 201 10.10 GuaranteedBoundsorBestApproximationorBoth? 209 SupplementaryMaterials 210 Acknowledgments 211 References 211 11 Affine-ContractorApproachtoHandleNonlinearDynamicalProblemsinUncertain Environment 215 NishaRaniMahato,SaudaminiRout,andSnehashishChakraverty 11.1 Introduction 215 11.2 ClassicalIntervalArithmetic 217 11.2.1 Intervals 217 11.2.2 SetOperationsofIntervalSystem 217 11.2.3 StandardIntervalComputations 218 11.2.4 AlgebraicPropertiesofInterval 219 11.3 IntervalDependencyProblem 219 11.4 AffineArithmetic 220 11.4.1 ConversionBetweenIntervalandAffineArithmetic 220 11.4.2 AffineOperations 221 (cid:2) 11.5 Contractor 223 (cid:2) 11.5.1 SIVIA 223 11.6 ProposedMethodology 225 11.7 NumericalExamples 230 11.7.1 NonlinearOscillators 230 11.7.1.1 UnforcedNonlinearDifferentialEquation 230 11.7.1.2 ForcedNonlinearDifferentialEquation 232 11.7.2 OtherDynamicProblem 233 11.7.2.1 NonhomogeneousLane–EmdenEquation 233 11.8 Conclusion 236 References 236 12 DynamicBehaviorofNanobeamUsingStrainGradientModel 239 SubratKumarJena,RajaramaMohanJena,andSnehashishChakraverty 12.1 Introduction 239 12.2 MathematicalFormulationoftheProposedModel 240 12.3 ReviewoftheDifferentialTransformMethod(DTM) 241 12.4 ApplicationofDTMonDynamicBehaviorAnalysis 242 12.5 NumericalResultsandDiscussion 244 12.5.1 ValidationandConvergence 244 12.5.2 EffectoftheSmall-ScaleParameter 245 12.5.3 EffectofLength-ScaleParameter 247 12.6 Conclusion 248 Acknowledgment 249 References 250 (cid:2) (cid:2) x Contents 13 StructuralStaticandVibrationProblems 253 M.AminChangiziandIonStiharu 13.1 Introduction 253 13.2 One-parameterGroups 254 13.3 InfinitesimalTransformation 254 13.4 CanonicalCoordinates 254 13.5 AlgorithmforLieSymmetryPoint 255 13.6 ReductionoftheOrderoftheODE 255 13.7 SolutionofFirst-OrderODEwithLieSymmetry 255 13.8 Identification 256 13.9 VibrationofaMicrocantileverBeamSubjectedtoUniformElectrostaticField 258 13.10 ContactFormfortheEquation 259 13.11 ReducingintheOrderoftheNonlinearODERepresentingtheVibrationofaMicrocantileverBeam UnderElectrostaticField 260 13.12 NonlinearPull-inVoltage 261 13.13 NonlinearAnalysisofPull-inVoltageofTwinMicrocantileverBeams 266 13.14 NonlinearAnalysisofPull-inVoltageofTwinMicrocantileverBeamsofDifferentThicknesses 268 References 272 14 GeneralizedDifferentialandIntegralQuadrature:TheoryandApplications 273 FrancescoTornabeneandRossanaDimitri 14.1 Introduction 273 (cid:2) 14.2 DifferentialQuadrature 274 (cid:2) 14.2.1 GenesisoftheDifferentialQuadratureMethod 274 14.2.2 DifferentialQuadratureLaw 275 14.3 GeneralViewonDifferentialQuadrature 277 14.3.1 BasisFunctions 278 14.3.1.1 LagrangePolynomials 281 14.3.1.2 TrigonometricLagrangePolynomials 282 14.3.1.3 ClassicOrthogonalPolynomials 282 14.3.1.4 MonomialFunctions 291 14.3.1.5 ExponentialFunctions 291 14.3.1.6 BernsteinPolynomials 291 14.3.1.7 FourierFunctions 292 14.3.1.8 BesselPolynomials 292 14.3.1.9 BoubakerPolynomials 292 14.3.2 GridDistributions 293 14.3.2.1 CoordinateTransformation 293 14.3.2.2 𝛿-PointDistribution 293 14.3.2.3 StretchingFormulation 293 14.3.2.4 SeveralTypesofDiscretization 293 14.3.3 NumericalApplications:DifferentialQuadrature 297 14.4 GeneralizedIntegralQuadrature 310 14.4.1 GeneralizedTaylor-BasedIntegralQuadrature 312 14.4.2 ClassicIntegralQuadratureMethods 314 14.4.2.1 TrapezoidalRulewithUniformDiscretization 314 14.4.2.2 Simpson’sMethod(One-thirdRule)withUniformDiscretization 314 (cid:2)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.