Mathematical Problems in Engineering Mathematical Methods Applied to the Celestial Mechanics of Artificial Satellites 2013 Guest Editors: Antonio F. Bertachini A. Prado, Josep J. Masdemont, Maria Cecilia Zanardi, Silvia Maria Giuliatti Winter, Tadashi Yokoyama, and Vivian Martins Gomes Mathematical Methods Applied to the Celestial Mechanics of Artificial Satellites 2013 Mathematical Problems in Engineering Mathematical Methods Applied to the Celestial Mechanics of Artificial Satellites 2013 Guest Editors: Antonio F. Bertachini A. Prado, Josep J. Masdemont, Maria Cecilia Zanardi, Silvia Maria Giuliatti Winter, Tadashi Yokoyama, and Vivian Martins Gomes Copyright©2013HindawiPublishingCorporation.Allrightsreserved. Thisisaspecialissuepublishedin“MathematicalProblemsinEngineering.”Allarticlesareopenaccessarticlesdistributedunderthe CreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedthe originalworkisproperlycited. Editorial Board M.AbdElAziz,Egypt ElmetwallyElabbasy,Egypt Ren-JiehKuo,Taiwan E.M.Abdel-Rahman,Canada A.El´ıas-Zu´n˜iga,Mexico JurgenKurths,Germany R.K.AbuAl-Rub,USA AndersEriksson,Sweden ClaudeLamarque,France SarpAdali,SouthAfrica VedatS.Erturk,Turkey UsikLee,Korea SalvatoreAlfonzetti,Italy MoezFeki,Tunisia MarekLefik,Poland IgorAndrianov,Germany RicardoFemat,Mexico StefanoLenci,Italy SebastianAnita,Romania RoberttA.Valente,Portugal RomanLewandowski,Poland W.Assawinchaichote,Thailand C.Fuerte-Esquivel,Mexico ShanlingLi,Canada ErweiBai,USA ZoranGajic,USA MingLi,China EzzatG.Bakhoum,USA UgoGalvanetto,Italy JianLi,China Jose´M.Balthazar,Brazil FurongGao,HongKong ShihuaLi,China R.K.Bera,India Xin-LinGao,USA Teh-LuLiao,Taiwan C.Be´renguer,France BehrouzGatmiri,Iran PanosLiatsis,UK JonathanN.Blakely,USA OlegV.Gendelman,Israel ShueeiM.Lin,Taiwan StefanoBoccaletti,Spain DidierGeorges,France Yi-KueiLin,Taiwan StephaneP.A.Bordas,USA PauloB.Gonc¸alves,Brazil Jui-ShengLin,Taiwan DanielaBoso,Italy OdedGottlieb,Israel YujiLiu,China M.Boutayeb,France FabrizioGreco,Italy WanquanLiu,Australia MichaelJ.Brennan,UK QuangPhucHa,Australia BinLiu,Australia SalvatoreCaddemi,Italy M.R.Hajj,USA PaoloLonetti,Italy PiermarcoCannarsa,Italy TonyS.W.Hann,Taiwan V.C.Loukopoulos,Greece JoseE.Capilla,Spain ThomasHanne,Switzerland JunguoLu,China CarloCattani,Italy K.R.(Stevanovic)Hedrih,Serbia Chien-YuLu,Taiwan MarceloM.Cavalcanti,Brazil M.I.Herreros,Spain AlexeiMailybaev,Brazil DiegoJ.Celentano,Chile Wei-ChiangHong,Taiwan ManoranjanK.Maiti,India MohammedChadli,France JaromirHoracek,CzechRepublic O.D.Makinde,SouthAfrica ArindamChakraborty,USA HuabingHuang,China R.Martinez-Guerra,Mexico Yong-KuiChang,China ChuangxiaHuang,China DrissMehdi,France MichaelJ.Chappell,UK GordonHuang,Canada RoderickMelnik,Canada KuiFuChen,China YiFengHung,Taiwan XinzhuMeng,China XinkaiChen,Japan Hai-FengHuo,China YuriV.Mikhlin,Ukraine Kue-HongChen,Taiwan AsierIbeas,Spain G.Milovanovic,Serbia Jyh-HorngChou,Taiwan AnuarIshak,Malaysia EbrahimMomoniat,SouthAfrica SlimChoura,Tunisia RezaJazar,Australia TrungNguyenThoi,Vietnam CesarCruz-Hernandez,Mexico ZhijianJi,China HungNguyen-Xuan,Vietnam SwagatamDas,India JunJiang,China BenT.Nohara,Japan FilippodeMonte,Italy J.J.Judice,Portugal SotirisK.Ntouyas,Greece AntonioDesimone,Italy TadeuszKaczorek,Poland GerardOlivar,Colombia YannisDimakopoulos,Greece TamasKalmar-Nagy,USA ClaudioPadra,Argentina BaocangDing,China TomaszKapitaniak,Poland BijayaKetanPanigrahi,India JoaoB.R.DoVal,Brazil HamidRezaKarimi,Norway FrancescoPellicano,Italy DaoyiDong,Australia MetinO.Kaya,Turkey MatjazPerc,Slovenia B.Dubey,India NikolaosKazantzis,USA VuNgocPhat,Vietnam HorstEcker,Austria FarzadKhani,Iran M.doRosa´rioPinho,Portugal M.OnderEfe,Turkey K.Krabbenhoft,Australia A.Pogromsky,TheNetherlands SeppoPohjolainen,Finland ChengShao,China MoranWang,China StanislavPotapenko,Canada BoShen,Germany YijingWang,China SergioPreidikman,USA Jian-JunShu,Singapore Gerhard-WilhelmWeber,Turkey CarstenProppe,Germany ZhanShu,UK J.A.S.Witteveen,TheNetherlands HectorPuebla,Mexico DanSimon,USA Kwok-WoWong,HongKong JustoPuerto,Spain LucianoSimoni,Italy LigangWu,China DaneQuinn,USA GrigoriM.Sisoev,UK ZhengguangWu,China K.R.Rajagopal,USA ChristosH.Skiadas,Greece GongnanXie,China GianlucaRanzi,Australia DavideSpinello,Canada WangXing-yuan,China SivaguruRavindran,USA SriSridharan,USA XiFrankXu,USA G.Rega,Italy RolfStenberg,Finland XupingXu,USA PedroRibeiro,Portugal ChangyinSun,China Jun-JuhYan,Taiwan J.Rodellar,Spain JitaoSun,China Xing-GangYan,UK R.Rodriguez-Lopez,Spain Xi-MingSun,China Suh-YuhYang,Taiwan A.J.Rodriguez-Luis,Spain AndrzejSwierniak,Poland MahmoudT.Yassen,Egypt IgnacioRomero,Spain YangTang,Germany MohammadI.Younis,USA HamidRonagh,Australia AllenTannenbaum,USA BoYu,China CarlaRoque,Portugal CristianToma,Romania HuangYuan,Germany Rube´nR.Garc´ıa,Spain IrinaN.Trendafilova,UK S.P.Yung,HongKong ManouchehrSalehi,Iran AlbertoTrevisani,Italy IonZaballa,Spain MiguelA.Sanjua´n,Spain Jung-FaTsai,Taiwan AshrafM.Zenkour,SaudiArabia IlmarF.Santos,Denmark K.Vajravelu,USA JianmingZhan,China NickolasS.Sapidis,Greece VictoriaVampa,Argentina XuZhang,China E.J.Sapountzakis,Greece JosepVehi,Spain YingweiZhang,China BozidarSarler,Slovenia StefanoVidoli,Italy LuZhen,China AndreyV.Savkin,Australia XiaojunWang,China LiancunZheng,China MassimoScalia,Italy DanWang,China JianGuoZhou,UK MohamedA.Seddeek,Egypt YouqingWang,China ZexuanZhu,China A.P.Seyranian,Russia YongqiWang,Germany MustaphaZidi,France LeonidShaikhet,Ukraine ChengC.Wang,Taiwan Contents MathematicalMethodsAppliedtotheCelestialMechanicsofArtificialSatellites2013, AntonioF.BertachiniA.Prado,JosepJ.Masdemont,MariaCeciliaZanardi,SilviaMariaGiuliattiWinter, TadashiYokoyama,andVivianMartinsGomes Volume2013,ArticleID854317,5pages FaultDetectionandIsolationinInertialMeasurementUnitsBasedon𝜒2-CUSUMandWaveletPacket, E´lcioJeronimodeOliveira,IjarMilagredaFonseca,andHe´lioKoitiKuga Volume2013,ArticleID869293,10pages AttitudeDynamicsandStabilityofaSimpleSolarPhotonThruster,AnnaD.Guerman,GeorgiSmirnov, andMariaCeciliaPereira Volume2013,ArticleID943107,7pages StudyingCloseApproachesforaCloudofParticlesConsideringAtmosphericDrag,VivianMartins Gomes,JorgeFormiga,andRodolphoVilhenadeMoraes Volume2013,ArticleID468624,10pages DesignoftheMicrosatelliteAttitudeControlSystemUsingtheMixed𝐻 /𝐻 MethodviaLMI 2 ∞ Optimization,ErbersonRodriguesPinheiroandLuizCarlosGadelhadeSouza Volume2013,ArticleID257193,8pages AttitudeDeterminationwithMagnetometersandAccelerometerstoUseinSatelliteSimulator, HelioKoitiKugaandValdemirCarrara Volume2013,ArticleID401282,6pages ApplicationoftheKalmanFiltertoEstimatetheStateofanAerobrakingManeuver, WillerGomesdosSantos,He´lioKoitiKuga,andEvandroMarconiRocco Volume2013,ArticleID234270,8pages ASimplePerturbationAlgorithmforInvertingtheCartesiantoGeodeticTransformation, JamesD.TurnerandTarekElgohary Volume2013,ArticleID712729,5pages AStudyofSingle-andDouble-AveragedSecond-OrderModelstoEvaluateThird-BodyPerturbation ConsideringEllipticOrbitsforthePerturbingBody,R.C.Domingos,A.F.BertachinideAlmeidaPrado, andR.VilhenadeMoraes Volume2013,ArticleID260830,11pages TrajectoryEstimationofAircraftinaDouble-SatellitePassivePositioningSystemwiththeAdjoint Method,AnzhouCao,YanqiuGao,JicaiZhang,andXianqingLv Volume2013,ArticleID502610,7pages AveragingMethodsforDesignofSpacecraftHysteresisDamper,RicardoGama, AnnaD.Guerman,AnaSeabra,andGeorgiV.Smirnov Volume2013,ArticleID483457,7pages EstimatingFrictionParametersinReactionWheelsforAttitudeControl, ValdemirCarraraandHe´lioKoitiKuga Volume2013,ArticleID249674,8pages ANewCelestialNavigationMethodforSpacecraftonaGravityAssistTrajectory,NingXiaolin, HuangPanpan,andFangJiancheng Volume2013,ArticleID950675,8pages TheStudyoftheAsymmetricMultipleEncountersProblemandItsApplicationtoObtainJupiter GravityAssistedManeuvers,DenilsonPauloSouzadosSantos, AntoˆnioFernandoBertachinideAlmeidaPrado,andEvandroMarconiRocco Volume2013,ArticleID745637,12pages TangentOrbitalRendezvousUsingLinearRelativeMotionwith𝐽2Perturbations,GangZhang, DongzheWang,XibinCao,andZhaoweiSun Volume2013,ArticleID531672,8pages DiscreteModelReferenceAdaptiveControlforGimbalServosystemofControlMomentGyrowith HarmonicDrive,BangchengHan,YanpengChen,HaitaoLi,andLianhuiYang Volume2013,ArticleID897579,10pages AveragingTesseralEffects:ClosedFormRelegationversusExpansionsofEllipticMotion,MartinLara, JuanF.San-Juan,andLuisM.Lo´pez-Ochoa Volume2013,ArticleID570127,11pages CircularOrbitTargetCaptureUsingSpaceTether-NetSystem,GuangZhai,Jing-ruiZhang, andZhangYao Volume2013,ArticleID601482,11pages PreciseAnalyticalComputationofFrozen-Eccentricity,LowEarthOrbitsinaTesseralPotential, MartinLara,JuanF.San-Juan,andLuisM.Lo´pez-Ochoa Volume2013,ArticleID191384,13pages SearchingforOrbitswithMinimumFuelConsumptionforStation-KeepingManeuvers:An ApplicationtoLunisolarPerturbations,AntonioFernandoBertachinideAlmeidaPrado Volume2013,ArticleID415015,11pages OnboardandReal-TimeArtificialSatelliteOrbitDeterminationUsingGPS, AnaPaulaMarinsChiaradia,He´lioKoitiKuga,andAntonioFernandoBertachinideAlmeidaPrado Volume2013,ArticleID530516,8pages MinimumFuelLow-ThrustTransfersforSatellitesUsingaPermanentMagnetHallThruster, ThaisCarneiroOliveira,EvandroMarconiRocco,Jose´LeonardoFerreira,andAntonioF.B.A.Prado Volume2013,ArticleID945030,12pages DynamicsofArtificialSatellitesaroundEuropa,JeanPaulodosSantosCarvalho, RodolphoVilhenadeMoraes,andAntoˆnioFernandoBertachinideAlmeidaPrado Volume2013,ArticleID182079,7pages StationKeepingofConstellationsUsingMultiobjectiveStrategies,EvandroMarconiRocco, MarceloLopesdeOliveiraeSouza,andAntonioFernandoBertachinideAlmeidaPrado Volume2013,ArticleID476451,15pages HindawiPublishingCorporation MathematicalProblemsinEngineering Volume2013,ArticleID854317,5pages http://dx.doi.org/10.1155/2013/854317 Editorial Mathematical Methods Applied to the Celestial Mechanics of Artificial Satellites 2013 AntonioF.BertachiniA.Prado,1JosepJ.Masdemont,2 MariaCeciliaZanardi,3 SilviaMariaGiuliattiWinter,3TadashiYokoyama,4andVivianMartinsGomes3 1INPE-DMC,AvenidadosAstronautas1758,12227-010Sa˜oJosedosCampos,SP,Brazil 2IEECandDepartamentdeMatema`ticaAplicadaI,UniversitatPolite`cnicadeCatalunya,Diagonal647,08028Barcelona,Spain 3UniversidadeEstadualPaulista,UNESP,CEP12516-410,CampusdeGuaratingueta´,Guaratingueta´,SP,Brazil 4UniversidadeEstadualPaulista,UNESP,CaixaPostal178,CEP13500-970,CampusdeRioClaro,RioClaro,SP,Brazil CorrespondenceshouldbeaddressedtoAntonioF.BertachiniA.Prado;[email protected] Received13November2013;Accepted13November2013 Copyright©2013AntonioF.BertachiniA.Pradoetal. This is an open access article distributed under the Creative Commons AttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkis properlycited. Studies related to celestial mechanics have been made for satellitelaunchedfromtheEarthbytheformerSovietUnion a long time. The observation of the sky showed the stars, in 1957, the Sputnik, many important steps were made. The in particular for some of them, called “Planets” by the manlandedontheMoonin1969;thetwoVoyagerspacecraft Greeks,thathaveaparticularmotionagainsttheotherstars. discoveredmanynewmoonsaroundthegiantplanetsJupiter, Thoseobservationschallengedthemindsofthosetimesand Saturn, and Uranus in the 70’s and 80’s, also finding many speculations appeared to try to explain those motions. This aspectsoftheplanetsthemselvesthatwouldnotbefoundby was the beginning of the astronomy science and opened telescopesbasedontheEarth. a particular field of study, focused on understanding the The combination of theory and practical observations motion of the planets, moons, asteroids, comets and other alsoshowedtheexistenceofplanetarysystemsaroundother celestial bodies. Several of the most important names in stars, the so called “exoplanets.” Soon “exomoons” around history are related to this field, like Ptolomeus, Nicolaus those“exoplanets”willbefound. Copernicus,GalileoGalilei,JohannesKepler,IsaacNewton, GoingbacktoourmotherEarth,people’slifehaschanged AlbertEinsteinandothers,whohelpedtofindthephysical dramatically for better after the space research activities lawsthatgovernthosemotions. started.Instantaneouscommunicationsbytelephone,televi- More recently, the last few decades brought the combi- sion, and so forth are mostly based on satellites travelling nation of this science with more practical applications in aroundtheEarthinstrategicorbitsspecifiedbymethodsused the engineering field. This combination created the term inastrodynamics.Drivingacarinanewplaceisnolongeran “Astrodynamics,”whichisusuallyconnectedtothestudyof adventure,afterthepopularizationofsmallandcheapdevices the motion of space vehicles made to explore the regions thatreceiveinformationfromaconstellationofsatellites,like of the space around the Earth and beyond. Of course, the theGPS,andcalculateitspositioninamap.Thediscoveriesof physicallawsarethesameforcelestialbodiesorspacecraft; resourcesonEarthmayalsobenefitfromimagestakenfrom itisjustaquestionofemphasizingoneorotheraspectsofthe space.Veryimportantactivities,likeweatherforecast,which knowledge. contributesinagriculturalactivitiesandinthepredictionof Althoughveryrecentintermsofhistory,thisnewcombi- naturaldisaster,alsorelyonsatellites. nationofscienceandengineeringhasalreadymadeseveral Thisspecialissueisthethirdoneofthisjournaldedicated important contributions to science. From the first artificial toproblemsrelatedtospaceresearch.Itcoverstopicsrelated 2 MathematicalProblemsinEngineering tomissiondesignfromeveryperspective,likeorbitselection, motionequations,itisonlysuitablefortheshort-rangecase attitude and orbit propagation, control of spacecraft, and betweentwospacecraft. relatedtopics.Thisissuegivesspecialattentiontoapplications Anotherpaperofthistopicis“ApplicationoftheKalman onthosefields,inordertobecomplementarytopublications filter to estimate the state of an aerobraking maneuver,” by that are more focused on theoretical developments. It has W. G. dos Santos et al., that study an application of the a total of twenty three papers, which are briefly described Kalman filter used to estimate the position and velocity of below. a spacecraft that is performing an aerobraking maneuver Five of them are concerned with the problems of opti- in the atmosphere of the Earth. Two examples are used: mal maneuvers. One of them is “Searching for orbits with the maneuver made by the Hiten spacecraft and an aero minimumfuelconsumptionforstation-keepingmaneuvers:An brakingofasatellitethatisinalowEarthorbit.Themodel applicationtolunisolarperturbations,”byA.Prado.Itdevelops considersareferencetrajectoryandatrajectoryperturbedby a criterion to map orbits with respect to the perturbations externalforcesandnonidealitiesofthesensorsandactuators. receivedbythesatellite.Themethodisbasedontheintegral APIDcontrollerandpropulsivejetsareusedtomaneuverthe oftheperturbingforcesoverthetime.Thisindexmeasures spacecraft.Theresultsshowcomparisonsusingandnotusing the variation of velocity transferred to the spacecraft by theKalmanfilter,showingtheimportanceofitsapplication. the perturbations. It is a characteristic of the orbit and the Another topic covered in this special issue is related to dynamicalsystemconsideredanditdoesnotdependonthe the determination, simulation, and propagation of orbits of engineorstation-keepingtechniquesused.Theresultsshow spacecraft. There are five papers related to this topic. One theeffectsoftheperturbationsduetotheSunandtheMoon of them is “Onboard and real-time artificial satellite orbit inspacecraftaroundtheEarth. determinationusingGPS”,byA.P.MChiaradiaetal.,which Then, the paper “Station keeping of constellations using introducesanalgorithmfororbitdeterminationapplyingthe multiobjective strategies,” by E. Rocco et al., studies how to extended Kalman Filter method. An analysis is performed perform station keeping maneuvers in constellations. The toascertainanadequacyofthemodelingcomplexityversus ideaistomakethosemaneuversundertwoconditions:low accuracy. The minimum set to estimate states to reach the fuelconsumptionandatimeconstraint.Theseconditionsare level of accuracy of tens of meters is found to have at least appliedtoallthemembersoftheconstellation,soastrategy theposition,velocity,anduserclockoffsetcomponents.The is searched to consider the global optimization of those dynamicalmodelisassessedthroughseveraltests,covering variables.Thisisamultiobjectiveproblem.Tofindasolution, the force model, the numerical integration scheme and the strategies that minimize the fuel consumption considering step-sizecontrol,usingsimplifiedvariationalequations.The the constraints on the duration of the maneuver are used. algorithm is tested with real-time data from a satellite with Severalexamplesareshowntoexemplifythetechnique. a GPS receiver on board. The satellite orbit is estimated The next paper of that set is “Minimum fuel low-thrust using the algorithm developed with good accuracy and transfersforsatellitesusingaPermanentmagnethallthruster,” minimumcomputationalcost.Inthisprocedure,theposition by T. Oliveira et al., that studies the problem of the orbital and velocity errors obtained along one day vary from 15 to maneuvers required to accomplish the goals of a space 20mandfrom0.014to0.018m/s,respectively,withstandard mission. In particular, the situation where it is necessary to deviations from 6 to 10m and from 0.006 to 0.008m/s, minimizethefuelconsumptionissolved,inordertoincrease respectively. thelifetimeofthesatellite.Thepaperhastwoparticulargoals: Another paper of this topic is “Precise analytical com- to develop an algorithm that can find optimal trajectories putation of frozen-eccentricity, low Earth orbits in a tesseral with continuous thrust that can be used in several types of potential”, by M. Lara et al., that considers the problem of missionsandtakingintoaccountdifferentconstraintsatthe finding frozen orbits using a higher degree geopotential, same time and to study the performance of the propulsion which takes into account the short-period effects of the devices under development at the Universidade de Brasilia tesseralharmonics.Thisapproachcandescribethebehavior to perform orbital maneuvers. It includes a study of the of elliptic frozen orbits in conditions where a model based consequenceoftheerrorsofthethrustlevelofthesepieces on the 𝐽2-𝐽3 terms is not good enough. Using this model it ofequipment. is possible to find low Earth orbits that show smaller long- Then comes the paper by G. Zhang et al., “Tangent periodeffectsinlong-termpropagationsthanthoseobtained orbital rendezvous using linear relative motion with 𝐽2 per- whenusingthezonalmodeldesign. turbations,”thatdiscussestheshort-rangecoplanarproblem Alsointhistopicthereisthepaper“Dynamicsofartificial for elliptic orbits. Three cases are analyzed with the first, satellites around Europa,” by J. P. dos S. Carvalho et al., the second, or both impulses being tangent. For a given that searched for stable orbits around Europa. The orbital initial point, the first two problems can be transformed elements of an artificial satellite in orbit around Europaare intofindingallrootsofasinglevariablefunctionaboutthe analyzed by developing the disturbing potential in a power transfer time, which can be done by the secant method. series of the eccentricity and inclination of the satellite. The bitangent rendezvous problem requires the same solu- This satellite is under the gravitational effects of Europa, tions obtained by considering the initial coasting time. with its gravitational coefficients 𝐽2 and 𝐽3 and Jupiter. The A numerical example for two coplanar elliptic orbits is Lagrangeplanetaryequationsarenumericallyintegratedand given to verify the efficiency of these proposed techniques. theresultsshowthatintherangeofsemimajoraxisbetween However, since this method is based on the linear relative 2000km and 3000km several polar orbits can survive for
Description: