ebook img

Mathematical Combinatorics (International Book Series), vol. II, 2020 PDF

2020·4.1 MB·English
by  MaoLinfan
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical Combinatorics (International Book Series), vol. II, 2020

ISBN 978-1-59973-661-7 VOLUME 2, 2020 MATHEMATICAL COMBINATORICS (INTERNATIONAL BOOK SERIES) Edited By Linfan MAO THE MADIS OF CHINESE ACADEMY OF SCIENCES AND ACADEMY OF MATHEMATICAL COMBINATORICS & APPLICATIONS, USA June, 2020 Vol.2, 2020 ISBN 978-1-59973-661-7 MATHEMATICAL COMBINATORICS (INTERNATIONAL BOOK SERIES) Edited By Linfan MAO (www.mathcombin.com) The Madis of Chinese Academy of Sciences and Academy of Mathematical Combinatorics & Applications, USA June, 2020 Aims and Scope: The mathematical combinatorics is a subject that applying combinatorial notiontoallmathematicsandallsciencesforunderstandingtherealityofthingsintheuniverse, motivatedbyCCConjectureofDr.LinfanMAOonmathematicalsciences. TheMathematical Combinatorics (International Book Series)isthebookformatofInternationalJournalof MathematicalCombinatorics(ISSN1937-1055), sponsoredbytheMADIS of Chinese Academy ofSciencesandpublishedinUSAquarterly,whichpublishesoriginalresearchpapersandsurvey articles in all aspects of mathematical combinatorics, Smarandache multi-spaces, Smarandache geometries, non-Euclidean geometry, topology and their applications to other sciences. Topics in detail to be covered are: Mathematical combinatorics; Smarandachemulti-spacesandSmarandachegeometrieswithapplicationstoothersciences; Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and map enumeration; Combinatorial designs; Combinatorial enumeration; Differential Geometry; Geometry on manifolds; Low Dimensional Topology; Differential Topology; Topology of Manifolds; Geometrical aspects of Mathematical Physics and Relations with Manifold Topology; Mathematical theory on gravitational fields and parallel universes; Applications of Combinatorics to mathematics and theoretical physics. Generally,papersonapplicationsofcombinatoricstoothermathematicsandothersciences are welcome by this journal. It is also available from the below international databases: Serials Group/Editorial Department of EBSCO Publishing 10 Estes St. Ipswich, MA 01938-2106, USA Tel.: (978) 356-6500, Ext. 2262 Fax: (978) 356-9371 http://www.ebsco.com/home/printsubs/priceproj.asp and Gale Directory of Publications and Broadcast Media, Gale, a part of Cengage Learning 27500 Drake Rd. Farmington Hills, MI 48331-3535, USA Tel.: (248) 699-4253, ext. 1326; 1-800-347-GALE Fax: (248) 699-8075 http://www.gale.com IndexingandReviews: MathematicalReviews(USA),ZentralblattMath(Germany),Refer- ativnyi Zhurnal (Russia), Mathematika (Russia), Directory of Open Access (DoAJ), EBSCO (USA), International Scientific Indexing (ISI, impact factor 2.012), Institute for Scientific In- formation (PA, USA), Library of Congress Subject Headings (USA). Subscription A subscription can be ordered by an email directly to Linfan Mao The Editor-in-Chief of International Journal of Mathematical Combinatorics Chinese Academy of Mathematics and System Science Beijing, 100190, P.R.China, and also the President of Academy of Mathematical Combinatorics & Applications (AMCA), Colorado, USA Email: [email protected] Price: US$48.00 Editorial Board (4th) Editor-in-Chief Linfan MAO Shaofei Du ChineseAcademyofMathematicsandSystem Capital Normal University, P.R.China Science, P.R.China Email: [email protected] and Xiaodong Hu Academy of Mathematical Combinatorics & ChineseAcademyofMathematicsandSystem Applications, Colorado, USA Science, P.R.China Email: [email protected] Email: [email protected] Deputy Editor-in-Chief Yuanqiu Huang Hunan Normal University, P.R.China Guohua Song Email: [email protected] Beijing University of Civil Engineering and H.Iseri Architecture, P.R.China Mansfield University, USA Email: [email protected] Email: hiseri@mnsfld.edu Editors Xueliang Li Nankai University, P.R.China Arindam Bhattacharyya Email: [email protected] Jadavpur University, India Guodong Liu Email: [email protected] Huizhou University Said Broumi Email: [email protected] Hassan II University Mohammedia W.B.Vasantha Kandasamy Hay El Baraka Ben M’sik Casablanca Indian Institute of Technology, India B.P.7951 Morocco Email: [email protected] Junliang Cai Ion Patrascu Beijing Normal University, P.R.China Fratii Buzesti National College Email: [email protected] Craiova Romania Yanxun Chang Han Ren Beijing Jiaotong University, P.R.China East China Normal University, P.R.China Email: [email protected] Email: [email protected] Jingan Cui Ovidiu-Ilie Sandru Beijing University of Civil Engineering and Politechnica University of Bucharest Architecture, P.R.China Romania Email: [email protected] ii MathematicalCombinatorics(InternationalBookSeries) Mingyao Xu Peking University, P.R.China Email: [email protected] Guiying Yan ChineseAcademyofMathematicsandSystem Science, P.R.China Email: [email protected] Y. Zhang Department of Computer Science Georgia State University, Atlanta, USA Famous Words: The ideals which have lighted my way, and time after time have given me new courage to face life cheerfully have been kindness, beauty and truth. By Albert Einstein, an American scientist Math.Combin.Book Ser. Vol.2(2020), 1-17 Mannheim Partner D-Curves in Minkowski 3-Space Tanju Kahraman1, Mehmet O¨nder3, Mustafa Kazaz1, H. Hu¨seyin U˘gurlu2 1. CelalBayarUniversity,DepartmentofMathematics,FacultyofArtsandSciences,Manisa,Turkey 2. GaziUniversity,GaziFacultyofEducation,DepartmentofSecondaryEducationScienceand MathematicsTeaching,MathematicsTeachingProgram,Ankara,Turkey 3. DelibekirliVillage,31440,Kırıkhan,Hatay,Turkey E-mail: [email protected],[email protected] [email protected],[email protected] Abstract: In this paper, we give the definition, different types and characterizations of Mannheim partner D-curves in Minkowski 3-space E3. We find the relations between the 1 geodesic curvatures, the normal curvatures and the geodesic torsions of these associated curves. Furthermore, we show that the definition and the characterizations of Mannheim partnerD-curvesincludethoseofMannheimpartnercurvesinsomespecialcasesinMinkows- ki 3-space E3. 1 Key Words: Minkowski 3-space, Mannheim partner D-curves, Darboux frame. AMS(2010): 53A35, 53B30, 53C50. §1. Introduction In the study of the fundamental theory and the characterizations of space curves, the related curvesforwhichthereexistcorrespondingrelationsbetweenthecurvesareveryinterestingand an important problem. The most fascinating examples of such curves are associated curves, the curves for which at the corresponding points of them one of the Frenet vectors of a curve coincideswiththeoneoftheFrenetvectorsoftheothercurve. Thewellknownoftheassociated curvesisBertrandcurvewhichischaracterizedasakindofcorrespondingrelationbetweenthe two curves. The relation is that the principal normal of a curve is the principal normal of another curve i.e, the Bertrand curve is a curve which shares the normal line with another curve. Over years many mathematicians have studied on Bertrand curves in different spaces and consider the properties of these curves [1-6]. Furthermore, Bertrand curves are not only the example of associated curves. Recently, a new definition of the associated curves was given by Liu and Wang [9,17]. They called these new curves as Mannheim partner curves: Let x and x be two curves in the three dimensional 1 Euclidean E3. If there exists a corresponding relationship between the space curves x and x 1 such that, at the corresponding points of the curves, the principal normal lines of x coincides with the binormal lines of x , then x is called a Mannheim curve, and x is called a Mannheim 1 1 partnercurveofx. Thepair{x,x }issaidtobeaMannheimpair. Theyshowedthatthecurve 1 1ReceivedMarch13,2020,AcceptedJune2,2020. 2 TanjuKahraman,MehmetO¨nder,MustafaKazaz,H.Hu¨seyinUg˘urlu x (s ) is the Mannheim partner curve of the curve x(s) if and only if the curvature κ and the 1 1 1 torsion τ of x (s ) satisfy the following equation 1 1 1 dτ κ τ˙ = = 1(1+λ2τ2) ds λ 1 1 forsomenon-zeroconstantλ. TheyalsostudytheMannheimcurvesinMinkowski3-space[9,16]. Some different characterizations of Mannheim partner curves are given by Orbay and others [12]. The differential geometry of the curves fully lying on a surface in Minkowski 3-spaceE3 1 is given by Ugurlu, Kocayigit and Topal [8,14,15]. They have given the Darboux frame of the curves according to the Lorentzian characters of surfaces and the curves. Finally, in the Euclidean 3-space, Mannheim partner D -curves is defined by Kazaz, M. and others [7] InthispaperweconsiderthenotionoftheMannheimpartnercurveforthecurveslyingon the surfaces. We call these new associated curves as Mannheim partner D-curves and by using theDarbouxframeofthecurveswegivethedefinition,differenttypesandthecharacterizations of these curves in Minkowski 3-spaceE3. 1 §2. Preliminaries The Minkowski 3-space E3 is the real vector space IR3 provided with the standard flat metric 1 given by (cid:104) , (cid:105)=−dx2+dx2+dx2 1 2 3 where(x ,x ,x )isarectangularcoordinatesystemofE3. Anarbitraryvector(cid:126)v =(v ,v ,v ) 1 2 3 1 1 2 3 in E3 can have one of three Lorentzian causal characters; it can be spacelike if (cid:104)(cid:126)v,(cid:126)v(cid:105) > 0 or 1 (cid:126)v = 0, timelike if (cid:104)(cid:126)v,(cid:126)v(cid:105) < 0 and null (lightlike) if (cid:104)(cid:126)v,(cid:126)v(cid:105) = 0 and (cid:126)v (cid:54)= 0. Similarly, an arbitrary curve α(cid:126) =α(cid:126)(s) can locally be spacelike, timelike or null (lightlike), if all of its velocity vectors α(cid:48)(s) are respectively spacelike, timelike or null (lightlike)[11]. We say that a timelike vector is future pointing or past pointing if the first compound of the vector is positive or negative, respectively. For any vectors(cid:126)x=(x ,x ,x ) and(cid:126)y =(y ,y ,y ) in E3, Lorentz vector product 1 2 3 1 2 3 1 of (cid:126)x and (cid:126)y is defined by (cid:12) (cid:12) (cid:12) e −e −e (cid:12) (cid:12) 1 2 3 (cid:12) (cid:12) (cid:12) (cid:126)x×(cid:126)y =(cid:12)(cid:12) x1 x2 x3 (cid:12)(cid:12)=(x2y3−x3y2, x1y3−x3y1, x2y1−x1y2) (cid:12) (cid:12) (cid:12) y1 y2 y3 (cid:12) where   1 i=j, δ = ij  0 i(cid:54)=j, e = (δ ,δ ,δ ) and e ×e =−e , e ×e =e , e ×e =−e . i i1 i2 i3 1 2 3 2 3 1 3 1 2 MannheimPartnerD-CurvesinMinkowski3-Space 3 (cid:110) (cid:111) Denote by T(cid:126), N(cid:126), B(cid:126) the moving Frenet frame along the curve α(s) in the Minkowski space E3. For an arbitrary spacelike curve α(s) in the space E3, the following Frenet formulae 1 1 are given,      T(cid:126)(cid:48) 0 k 0 T(cid:126) 1  N(cid:126)(cid:48) = −εk 0 k  N(cid:126) , 1 2      B(cid:126)(cid:48) 0 k 0 B(cid:126) 2 (cid:68) (cid:69) (cid:68) (cid:69) (cid:68) (cid:69) (cid:68) (cid:69) (cid:68) (cid:69) (cid:68) (cid:69) where T(cid:126),T(cid:126) = 1, N(cid:126),N(cid:126) = ε = ±1, B(cid:126),B(cid:126) = −ε, T(cid:126),N(cid:126) = T(cid:126),B(cid:126) = N(cid:126),B(cid:126) = 0 and k andk arecurvatureandtorsionofthespacelikecurveα(s)respectively. Here,εdetermines 1 2 the kind of spacelike curve α(s). If ε = 1, then α(s) is a spacelike curve with spacelike first principal normal N(cid:126) and timelike binormal B(cid:126). If ε = −1, then α(s) is a spacelike curve with timelike principal normal N(cid:126) and spacelike binormal B(cid:126). Furthermore, for a timelike curve α(s) in the space E3, the following Frenet formulae are given in as follows, 1      T(cid:126)(cid:48) 0 k 0 T(cid:126) 1  N(cid:126)(cid:48) = k 0 k  N(cid:126) . 1 2      B(cid:126)(cid:48) 0 −k 0 B(cid:126) 2 (cid:68) (cid:69) (cid:68) (cid:69) (cid:68) (cid:69) (cid:68) (cid:69) (cid:68) (cid:69) (cid:68) (cid:69) where T(cid:126),T(cid:126) =−1, N(cid:126),N(cid:126) = B(cid:126),B(cid:126) =1, T(cid:126),N(cid:126) = T(cid:126),B(cid:126) = N(cid:126),B(cid:126) =0 and k and k 1 2 are curvature and torsion of the timelike curve α(s) respectively [14,15]. Definition 2.1([11]) (i) (Hyperbolic angle) Let (cid:126)x and (cid:126)y be future pointing (or past pointing) timelike vectors in IR3. Then there is a unique real number θ (cid:62) 0 such that < (cid:126)x, (cid:126)y >= 1 −|(cid:126)x| |(cid:126)y| coshθ. This number is called the hyperbolic angle between the vectors (cid:126)x and (cid:126)y. (ii) (Central angle) Let (cid:126)x and (cid:126)y be spacelike vectors in IR3 that span a timelike vector 1 subspace. Then there is a unique real number θ (cid:62) 0 such that < (cid:126)x, (cid:126)y >= |(cid:126)x| |(cid:126)y| coshθ. This number is called the central angle between the vectors (cid:126)x and (cid:126)y. (iii) (Spacelike angle) Let (cid:126)x and (cid:126)y be spacelike vectors in IR3 that span a spacelike vector 1 subspace. Then there is a unique real number θ (cid:62) 0 such that < (cid:126)x, (cid:126)y >= |(cid:126)x| |(cid:126)y| cosθ. This number is called the spacelike angle between the vectors (cid:126)x and (cid:126)y. (iv) (Lorentzian timelike angle) Let (cid:126)x be a spacelike vector and (cid:126)y be a timelike vector in IR3. Then there is a unique real number θ (cid:62) 0 such that <(cid:126)x, (cid:126)y >=|(cid:126)x| |(cid:126)y| sinhθ. This number 1 is called the Lorentzian timelike angle between the vectors (cid:126)x and (cid:126)y. Definition 2.2([11]) A surface in the Minkowski 3-space IR3 is called a timelike surface if 1 the induced metric on the surface is a Lorentz metric and it is called a spacelike surface if the induced metric on the surface is a positive definite Riemannian metric, i.e., the normal vector on the spacelike (timelike) surface is a timelike (spacelike) vector, respectively. Lemma 2.1([11]) In the Minkowski 3-space IR3, the following properties are satisfied: 1 (i) Two timelike vectors are never orthogonal; (ii) Two null vectors are orthogonal if and only if they are linearly dependent; (iii) A timelike vector is never orthogonal to a null (lightlike) vector . 4 TanjuKahraman,MehmetO¨nder,MustafaKazaz,H.Hu¨seyinUg˘urlu §3. Darboux Frame of a Curve Lying on a Surface in Minkowski 3-space E3 1 Let S be an oriented surface in three-dimensional Minkowski space E3 and let consider a non- 1 null curve x(s) lying on S fully. Since the curve x(s) is also in space, there exists Frenet frame (cid:110) (cid:111) T(cid:126),N(cid:126),B(cid:126) at each points of the curve where T(cid:126) is unit tangent vector, N(cid:126) is principal normal vector and B(cid:126) is binormal vector, respectively. Sincethecurvex(s)liesonthesurfaceS thereexistsanotherframeofthecurvex(s)which (cid:110) (cid:111) is called Darboux frame and denoted by T(cid:126),(cid:126)g,(cid:126)n . In this frame T(cid:126) is the unit tangent of the curve, (cid:126)n is the unit normal of the surface S and (cid:126)g is a unit vector given by (cid:126)g =(cid:126)n×T(cid:126). Since the unit tangent T(cid:126) is common in both Frenet frame and Darboux frame, the vectors N(cid:126), B(cid:126), (cid:126)g and(cid:126)nlieonthesameplane. Then, ifthesurfaceS isanorientedtimelikesurface, therelations between these frames can be given as follows: If the curve x(s) is timelike, If the curve x(s) is spacelike           T(cid:126) 1 0 0 T(cid:126) T(cid:126) 1 0 0 T(cid:126)  (cid:126)g = 0 cosϕ sinϕ  N(cid:126) , (cid:126)g = 0 coshϕ sinhϕ  N(cid:126) .           (cid:126)n 0 −sinϕ cosϕ B(cid:126) (cid:126)n 0 sinhϕ coshϕ B(cid:126) IfthesurfaceS isanorientedspacelikesurface,thenthecurvex(s)lyingonS isaspacelike curve. So, the relations between the frames can be given as follows      T(cid:126) 1 0 0 T(cid:126)  (cid:126)g = 0 coshϕ sinhϕ  N(cid:126) .      (cid:126)n 0 sinhϕ coshϕ B(cid:126) In all cases, ϕ is the angle between the vectors(cid:126)g and N(cid:126). According to the Lorentzian causal characters of the surface S and the curve x(s) lying on S, the derivative formulae of the Darboux frame can be changed as follows: (i) If the surface S is a timelike surface, then the curve x(s) lying on S can be a spacelike or a timelike curve. Thus, the derivative formulae of the Darboux frame of x(s) is given by  T(cid:126)˙   0 k −εk  T(cid:126)  g n  (cid:126)g˙ = k 0 ετ  (cid:126)g ,(cid:68)T(cid:126),T(cid:126)(cid:69)=ε=±1, (cid:104)(cid:126)g,(cid:126)g(cid:105)=−ε, (cid:104)(cid:126)n,(cid:126)n(cid:105)=1. (1) g g      (cid:126)n˙ k τ 0 (cid:126)n n g (ii) If the surface S is a spacelike surface, then the curve x(s) lying on S is a spacelike MannheimPartnerD-CurvesinMinkowski3-Space 5 curve. Thus, the derivative formulae of the Darboux frame of x(s) is given by  T(cid:126)˙   0 k k  T(cid:126)  g n  (cid:126)g˙ = −k 0 τ  (cid:126)g ,(cid:68)T(cid:126),T(cid:126)(cid:69)=1, (cid:104)(cid:126)g,(cid:126)g(cid:105)=1, (cid:104)(cid:126)n,(cid:126)n(cid:105)=−1. (2) g g      (cid:126)n˙ k τ 0 (cid:126)n n g In these formulae k ,k and τ are called the geodesic curvature, the normal curvature g n g and the geodesic torsion, respectively. Here and in the following, we use “dot” to denote the derivative with respect to the arc length parameter of a curve. The relations between geodesic curvature, normal curvature, geodesic torsion and κ, τ are given as follows (See [9,14,15]): • if both S and x(s) are timelike or spacelike, dϕ k =κcosϕ,k =κsinϕ,τ =τ + ; (3) g n g ds • if S is timelike and x(s) is spacelike dϕ k =κcoshϕ,k =κsinhϕ,τ =τ + . (4) g n g ds Furthermore, the geodesic curvature k and geodesic torsion τ of the curve x(s) can be calcu- g g lated as follows: (cid:28)dx d2x (cid:29) (cid:28)dx dn(cid:29) k =− , ×n ,τ =−ε , n× , (5) g ds ds2 g ds ds (cid:28)dx d2x (cid:29) (cid:28)dx dn(cid:29) k =− , ×n ,τ = , n× . (6) g ds ds2 g ds ds (cid:68) (cid:69) where ε= T(cid:126),T(cid:126) =±1. In the differential geometry of surfaces, for a curve x(s)lying on a surface S the followings are well-known • x(s)is a geodesic curve ⇔ k =0, g • x(s)is an asymptotic line ⇔ k =0, n • x(s)is a principal line ⇔τ =0 [10]. g Alongeverypointofthesurfacepassesageodesicineverydirection. Ageodesicisuniquely determined by an initial point and tangent at that point. All straight lines on a surface are geodesics. Along all curved geodesics the principal normal coincides with the surface normal. Along asymptotic lines osculating planes and tangent planes coincide, along geodesics they are normal. Through a point of a nondevelopable surface pass two asymptotic lines which can be real or imaginary [13].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.