Cira Perna Marilena Sibillo Editors Mathematical and Statistical Methods for Actuarial Sciences and Finance Mathematical and Statistical Methods for Actuarial Sciences and Finance Cira Perna (cid:2) Marilena Sibillo Editors Mathematical and Statistical Methods for Actuarial Sciences and Finance Editors CiraPerna MarilenaSibillo DepartmentofEconomicsandStatistics DepartmentofEconomicsandStatistics UniversityofSalerno UniversityofSalerno Fisciano,Salerno,Italy Fisciano,Salerno,Italy ISBN978-3-319-05013-3 ISBN978-3-319-05014-0(eBook) DOI10.1007/978-3-319-05014-0 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2014933795 ©SpringerInternationalPublishingSwitzerland2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Thisvolume1 aimstocollectnewideaspresentedinformof 4-pagespapersdedi- catedtomathematicalandstatisticalmethodsinactuarialsciencesandfinance.The cooperationbetweenmathematiciansandstatisticiansworkingininsuranceandfi- nanceisaveryfruitfulfieldandprovidesinterestingscientificproductsintheoretical modelsandpracticalapplications,aswellasinthescientificdiscussionofproblems ofnationalandinternationalinterest. Fromthetheoreticalandapplicativepointofview,thetopicscoveredinthebook are: actuarial models; alternative testing approaches; behavioural finance; cluster- ingtechniques;coherentandno-coherentriskmeasures;credit-scoringapproaches; data envelopment analysis; dynamic stochastic programming; financial contagion models; financial ratios; intelligent financial trading systems; mixture normality approaches; Monte Carlo-based methodologies; multi-criteria methods; nonlinear parameterestimationtechniques;nonlinearthresholdmodels;particleswarmopti- mization;performancemeasures;portfoliooptimization;pricingmethodsforstruc- tured and non-structured derivatives; risk management; skewed distribution anal- ysis; solvency analysis; stochastic actuarial valuation methods; variable selection models;timeseriesanalysistools. In the light of the successful cooperation between the above two quantitative approaches,theEditorsofthevolumeorganizethebiennialconferenceonMathe- maticalandStatisticalMethodsforActuarialSciencesandFinance(MAF),bornat theUniversityofSalernoin2004andjustarrivedatits6theditionthisyear. Salerno CiraPernaandMarilenaSibillo April2014 1PublishedwiththecontributionofDipartimentodiScienzeEconomicheeStatistiche,Università degliStudidiSalerno. v Contents CanPersonalDependencyPathsHelptoEstimateLifeExpectancy FreeofDependency? . . . . . . . . . . . . . . . . . . . . . . . . . . 1 IreneAlbarrán,PabloAlonso,AnaArribas-Gil,andAureaGrané EvaluationofVolatilityForecastsinaVaRFramework . . . . . . . . . 7 AlessandraAmendolaandVincenzoCandila OptimalCut-OffPointsforMultipleCausesofBusinessFailureModels 11 AlessandraAmendolaandMarialuisaRestaino Maximum Empirical Likelihood Inference for Outliers inAutoregressiveTimeSeries . . . . . . . . . . . . . . . . . . . . . 17 RobertoBaragona,FrancescoBattaglia,andDomenicoCucina The Role of Fund Size and Returns to Scale in the Performance ofMutualFunds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 AntonellaBassoandStefaniaFunari ARobustnessAnalysisofLeast-SquaresMonteCarloforR&DReal OptionsValuation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 MartaBiancardiandGiovanniVillani The Common Pool Problem of Intergovernmental Interactions andFiscalDiscipline:AStackelbergApproach . . . . . . . . . . . 31 GiovannaBimonteandPietroSpennati EvaluatingCorrelationsinEuropeanGovernmentBondSpreads . . . . 35 SimonaBoffelliandGiovanniUrga ProbabilityofDefault:AModernCalibrationApproach. . . . . . . . . 41 StefanoBoniniandGiulianaCaivano DevelopmentofaLGDModelBasel2Compliant:ACaseStudy . . . . 45 StefanoBoniniandGiulianaCaivano vii viii Contents ModellingtheLatentComponentsofPersonalHappiness . . . . . . . . 49 StefaniaCapecchiandDomenicoPiccolo MeasuringtheImpactofBehaviouralChoicesontheMarketPrices . . 53 MassimilianoCaporin,LucaCorazzini,andMicheleCostola ANoteonNaturalRiskStatistics,OWAOperatorsandGeneralized GiniFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 MartaCardin The Estimation of Standard Deviation of Premium Risk Under Solvency2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 RoccoRobertoCerchiaraandVittorioMagatti TheSolvencyCapitalRequirementManagementforanInsurance Company . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 MariarosariaCoppolaandValeriaD’Amato DirectMulti-StepEstimationandTimeSeriesClassification . . . . . . 69 MarcellaCorduas AlternativeAssessmentsoftheLongevityTrends . . . . . . . . . . . . . 73 ValeriaD’Amato,StevenHaberman,GabriellaPiscopo,and MariaRussolillo Combinatorial Nonlinear Goal Programming for ESG Portfolio OptimizationandDynamicHedgeManagement . . . . . . . . . . . 77 GordonH.DashJr.andNinaKajiji OntheGeometricBrownianMotionwithAlternatingTrend . . . . . . 81 AntonioDiCrescenzo,BarbaraMartinucci,andShelemyahuZacks EmpiricalEvidencesonPredictiveAccuracyofSurvivalModels . . . . 87 EmiliaDiLorenzo,MicheleLaRocca,AlbinaOrlando,CiraPerna, andMarilenaSibillo RedES™, a Risk Measure in a Pareto-Lévy Stable Framework withClustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 RiccardoDonatiandMarcoCorazza Run-OffErrorintheOutstandingClaimsReservesEvaluation . . . . . 95 NicolinoEttoreD’OrtonaandGiuseppeMelisi TrajectoryBasedMarketModels.ArbitrageandPricingIntervals . . . 99 SebastianFerrando,AlfredoGonzalez,IvanDegano,and MassoomeRahsepar AStatisticalTestfortheHestonModel. . . . . . . . . . . . . . . . . . . 105 GiannaFigà-Talamanca ThresholdRandomWalkStructuresinFinance . . . . . . . . . . . . . 109 FrancescoGiordano,MarcellaNiglio,andCosimoDamianoVitale Contents ix StochasticMortalityModels.ApplicationtoCRMortalityData. . . . . 113 JánGogola RiskAdjustedDynamicHedgingStrategies . . . . . . . . . . . . . . . . 117 MartinHarcek PricingandHedgingVariableAnnuities . . . . . . . . . . . . . . . . . . 121 AbdouKélaniandFrançoisQuittard-Pinon MonetaryRiskFunctionalsonOrliczSpacesProducedbySet-Valued RiskMapsandRandomMeasures . . . . . . . . . . . . . . . . . . 125 DimitriosG.KonstantinidesandChristosE.Kountzakis AProbabilityInequalityRelatedtoMardia’sKurtosis . . . . . . . . . . 129 NicolaLoperfido Integrating Industrial and Financial Analysis into a Rating Methodology for Corporate Risk Detection: The Case oftheVicenzaManufacturingFirms . . . . . . . . . . . . . . . . . 133 GuidoMaxMantovani,GiancarloCoro,PaoloGurisatti,and MattiaMestroni RiskMeasurementUsingtheMixedTemperedStableDistribution . . . 137 LorenzoMercuriandEditRroji CorporateFinance...WhatElse?TheCaseoftheProductiveChain NetworksinNorth-EastItalyandtheScaffoldingFinanceAdopted byTheirLeader . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 MattiaMestroni,ElisabettaBasilico,andGuidoMaxMantovani BEKK Element-by-Element Estimation of a Volatility Matrix. APortfolioSimulation . . . . . . . . . . . . . . . . . . . . . . . . . 145 AlessiaNaccaratoandAndreaPierini TheEffectsofCurvatureandElevationoftheProbabilityWeighting FunctiononOptionsPrices . . . . . . . . . . . . . . . . . . . . . . 149 MartinaNardonandPaoloPianca A Multivariate Approach to Project the Long Run Relationship BetweenMortalityIndicesforCanadianProvinces . . . . . . . . . 153 AchilleNtamjokouen,StevenHaberman,andGiorgioConsigli MeasuringandManagingtheLongevityRisk:AnEmpiricalEvidence FromtheItalianPensionMarket . . . . . . . . . . . . . . . . . . . 163 AlbinaOrlando,GovannadiLorenzo,andMassimilianoPolitano Pricing and Hedging Basket Options Under Shifted Asymmetric Jump-DiffusionProcesses . . . . . . . . . . . . . . . . . . . . . . . 167 TommasoPaletta,ArturoLeccadito,andRaduTunaru x Contents On a Data Mining Framework for the Identification of Frequent PatternTrends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 MarinaResta RiskProcesseswithNormalInverseGaussianClaimsandPremiums . . 177 DeanTenengandKalevPärna APortfolioModelfortheRiskManagementinPublicPension . . . . . 183 TadashiUratani BlackScholesOptionSensitivityUsingHighOrderGreeks . . . . . . . 187 YvesRakotondratsimba Can Personal Dependency Paths Help to Estimate Life Expectancy Free of Dependency? IreneAlbarrán,PabloAlonso,AnaArribas-Gil,andAureaGrané Abstract Theagingofpopulationisperhapsthemostimportantproblemthatde- veloped countries must face in the near future. In fact, one of the eight tackling societal challenges of the European program Horizon 2020 is concerned with it. Dependencycanbeseenasaconsequenceoftheprocessofgradualaging.There- fore,itsprevalenceonthepopulation,itsintensityandevolutionoverthecourseof aperson’slifehaverelevanteconomic,politicalandsocialimplications.Fromdata base EDAD 2008 the authors constructed a pseudo panel that registers personal evolutionofthedependencyscaleaccordingtotheSpanishlegislationandobtained individual dependencycurves. In this work, our aim is to estimate life expectancy freeofdependencyusingcategoricaldataandthefunctionalinformationcontained inthesetrajectories. Keywords Dependency·Functionaldata·Lifeexpectancy 1 Introduction When talking about dependency two fundamental aspects must be considered. Firstly,thedefinitionitself.ResolutionR(98)oftheCouncilofEuropedefinesde- pendencyas“suchstateinwhichpeople,whomforreasonconnectedtothelackor loss of physical, mental or intellectual autonomy, require assistance and/or exten- sivehelpinordertocarryoutcommoneverydayactions”.Secondly,theassessment I.Albarrán·A.Arribas-Gil·A.Grané(B) UniversidadCarlosIIIdeMadrid,Getafe,Spain e-mail:[email protected] I.Albarrán e-mail:[email protected] A.Arribas-Gil e-mail:[email protected] P.Alonso UniversidaddeAlcalá,AlcaládeHenares,Spain e-mail:[email protected] C.Perna,M.Sibillo(eds.),MathematicalandStatisticalMethodsforActuarialSciences 1 andFinance,DOI10.1007/978-3-319-05014-0_1, ©SpringerInternationalPublishingSwitzerland2014
Description: