Mathematical and Numerical Methods for Non-linear Beam Dynamics W.Herr CERN,Geneva,Switzerland Abstract Non-lineareffectsinacceleratorphysicsareimportantforbothsuccessfulop- erationofacceleratorsandduringthedesignstage. Sincebothoftheseaspects are closely related, they will be treated together in this overview. Some of themostimportantaspectsarewelldescribedbymethodsestablishedinother areasofphysicsandmathematics. Thetreatmentwillbefocusedontheprob- lemsinacceleratorsusedforparticlephysicsexperiments. Althoughthemain 6 emphasis will be on accelerator physics issues, some of the aspects of more 1 generalinterestwillbediscussed. Inparticular,wedemonstratethatinrecent 0 2 years a framework has been built to handle the complex problems in a con- n sistentform,technicallysuperiorandconceptuallysimplerthanthetraditional a techniques. Theneedtounderstandthestabilityofparticlebeamshassubstan- J tially contributed to the development of new techniques and is an important 0 source of examples which can be verified experimentally. Unfortunately, the 2 documentation of these developments is often poor or even unpublished, in ] manycasesonlyavailableaslecturesorconferenceproceedings. h p - c 1 Introductionandmotivation c a 1.1 Single-particledynamics . s Theconceptsdevelopedhereareusedtodescribesingle-particletransversedynamicsinrings,i.e. circu- c i lar accelerators or storage rings. In the case of linear betatron motion the theory is rather complete and s y thestandardtreatment[1]sufficestodescribethedynamics. Inparallelwiththistheorythewell-known h concepts such as closed orbit and Twiss parameters are introduced and emerge automatically from the p [ Courant–Snyderformalism[1]. Theformalismandapplicationsarefoundinmanytextbooks(e.g.[2,3]). 1 Inmanynewacceleratorsorstoragerings(e.g.theLargeHadronCollider(LHC))thedescription v of the machine with a linear formalism becomes insufficient and the linear theory must be extended to 1 treat non-linear effects. The stability and confinement of the particles is not given a priori and should 1 4 ratheremergefromtheanalysis. Non-lineareffectsareamainsourceofperformancelimitationsinsuch 5 machines. Non-linear dynamics has to be used in many applications and the basics are described in the 0 literature [4,5]. A reliable treatment is required and the progress in recent years allows us to evaluate . 1 theseeffects. Averyusefuloverviewanddetailscanbefoundin[6–8]. 0 6 In this article, we restrict the treatment to the beam dynamics in rings, since properties such as 1 stabilityofparticlesrestricttheformofthetoolstodescribethem. However,manyoftheconcepts(e.g. : v Lietransformations)canbeverybeneficialfortheanalysisofsingle-passsystems. i X r 2 Newconcepts a Thekeytothemoremodernapproachshowninthisarticleistoavoidtheprejudicesaboutthestability andotherpropertiesofthering. Instead,wemustdescribethemachineintermsoftheobjectsitconsists ofwithalltheirproperties, includingthenon-linearelements. Theanalysiswillrevealthepropertiesof theparticlessuchas,e.g.,stability. Inthesimplestcase,theringismadeofindividualmachineelements such as magnets which have an existence on their own, i.e. the interaction of a particle with a given element is independent of the motion in the rest of the machine. To successfully study single-particle dynamics, we must be able to describe the action of the machine element on the particle as well as the effectofthemachineelementinthepresenceofallothermagnetsinthering[9]. 2.1 Map-basedtechniques In the standard approach to single-particle dynamics in rings, the equations of motion are introduced together with an ansatz to solve these equations. In the case of linear motion, this ansatz is known as theCourant–Snydertreatment. However,thistreatmentmustassumethatthemotionofaparticleinthe ring is stable and confined. For a non-linear system this is a priori not known and the attempt to find a completedescriptionoftheparticlemotionmustfail. Inamoremodernapproach,wedonotattempttosolvesuchanoverallequationbutratherconsider the fundamental objects of an accelerator, i.e. the machine elements themselves. These elements, e.g. magnetsorotherbeamelements,arethebasicbuildingblocksofthemachine. Allelementshaveawell- definedactiononaparticlewhichcanbedescribedindependentlyofotherelementsorconceptssuchas closed orbit or β-functions. Mathematically, they provide a ‘map’ from one face of a building block to theother,i.e.adescriptionofhowtheparticlesmoveinsideandbetweenelements. Inthiscontext,amap canbeanythingfromlinearmatricestohigh-orderintegrationroutines. Thecollectionofallmachineelementsmakesuptheringanditisthecombinationoftheassociated maps which is necessary for the description and analysis of the physical phenomena in the accelerator ring. The most interesting map is the one which describes the motion once around the machine, the so-calledone-turnmap(OTM).Itcontainsallnecessaryinformationonstabilityandexistenceofclosed orbitandopticalparameters. Thereaderisassumedtobefamiliarwiththisconceptinthecaseoflinear beamdynamics[10],whereallmapsarematricesandtheCourant–Snyderanalysisofthecorresponding OTMproducesthedesiredinformationsuchas,e.g.,closedorbitorTwissparameters. Itshouldthereforebethegoaltogeneralizethisconcepttonon-lineardynamics. Thecomputation ofareliableOTMandtheanalysisofitspropertieswillprovideallrelevantinformation. 2.1.1 Basicconcept Giventhatthenon-linearmapscanberathercomplexobjects, theanalysisoftheOTMshouldbesepa- ratedfromthecalculationofthemapitself. Using the coordinate vector (cid:126)z = (x,x(cid:48) = ∂x/∂s,y,y(cid:48) = ∂y/∂s), the map M transforms the coordinatesz(cid:126) (s )throughamagnetM atpositions tonewcoordinatesz(cid:126) (s )atpositions : 1 1 1 2 2 2 x x x(cid:48) x(cid:48) z(cid:126)2(s2) = y = M◦ y = M◦z(cid:126)1(s1). (1) y(cid:48) y(cid:48) s2 s1 Thesubsequentanalysisofthemapshouldrevealthequantitiesofinterest. 3 Linearmaps FirstIshallintroducethesimplestformofmaps,i.e. linearmaps,andgeneralizeafterwards. 3.1 Examplesforlinearmaps Asafirstexample,IconsideradriftspaceoflengthL. Theformaldescriptionusingthemapcanbewritten (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) x 1 L x = ◦ . (2) x(cid:48) 0 1 x(cid:48) s2 s1 2 Asasecondexample,Ishowthemap(matrix)forafocusingquadrupoleoflengthLandstrengthk: (cid:32) √ √ (cid:33) (cid:18) x (cid:19) cosL· k √1 ·sinL· k (cid:18) x (cid:19) = √ √ k √ ◦ . (3) x(cid:48) − k·sinL· k cosL· k x(cid:48) s2 s1 ThemapforaquadrupolewithshortlengthL(i.e. 1 (cid:29) L·k)canbeapproximatedby (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) x 1 0 x = ◦ . (4) x(cid:48) −k·L(= 1) 1 x(cid:48) s2 f s1 TheseareMaps,anddescribethemovementwithinanelement. 3.2 OTMs Starting from a position s and applying all maps (for N elements) in sequence around a ring with 0 circumferenceC,wegettheOTMforthepositions (foronedimensiononly): 0 (cid:18) (cid:19) (cid:18) (cid:19) x x = M ◦M ◦···◦M ◦ (5) x(cid:48) 1 2 N x(cid:48) s0+C s0 (cid:18) (cid:19) (cid:18) (cid:19) x x =⇒ = M (s )◦ . (6) x(cid:48) ring 0 x(cid:48) s0+C s0 Afterthisconcatenation,wehaveobtainedaOTMforthewholering(6). Inthesimplestcaseall maps are matrices and the concatenation is just the multiplication of linear matrices. Having obtained thisOTM,itsanalysiswillgiveallrelevantinformation; thereisnoneedforanyassumptions. Tosolve Hill’s equation using the standard ansatz [10], we need several assumptions such as existence of closed orbitandconfinementorperiodicity. Havingderivedthemap,wehavetoextracttheinformationneeded. Tointroducethistopic,wefirsttreatalinearOTM,i.e.amatrix. 3.3 Linearnormalforms Thekeytotheanalysisisthatmaps(herematrices)canbetransformedinto(Jordan)normalforms. The originalmapsandthenormalformsareequivalent,butthenormalformandtherequiredtransformation automaticallyprovidethedataweneed, suchasstability, closedorbit, opticalparameters(Q,Q(cid:48), Twiss function,etc.),invariantsofthemotion,resonanceanalysis,andsoon. 3.3.1 Linearnormal-formtransformation Thebasicideaistomakeatransformationtogetasimplerformforthemap. AssumingthatthemapM propagatesthevariablesfromlocation1tolocation2,wetrytofind 12 transformationsA ,A suchthat 1 2 A M A−1 = R . (7) 1 12 2 12 The map R is a ‘Jordan normal form’ (or at least a very simplified form of the map). For example, 12 R becomes a pure rotation, which is a simple and typical normal form. The map R describes the 12 12 samedynamicsasM ,butallcoordinatesaretransformedbyA andA . ThetransformationsA ,A 12 1 2 1 2 ‘analyse’themotion. WeassumethattheOTM(hereamatrix)M(s)atthepositionsis(seee.g.thearticleontransverse dynamics[10]) (cid:18) (cid:19) cos(∆µ)+α(s)sin(∆µ) β(s)sin(∆µ) M(s) = . (8) −γ(s)sin(∆µ) cos(∆µ)−α(s)sin(∆µ) 3 Fig.1: Normal-formtransformforalinearOTM(schematic) This matrix describes the motion on a phase-space ellipse. We can rewrite M such that one part R becomesapurerotation(acircle),i.e. ARA−1 = M. (9) Rememberinglecturesonlinearalgebra,thistransformationisdonebytheevaluationoftheeigenvectors andeigenvalues. Startingfrom M = A◦R(∆µ)◦A−1 or R(∆µ) = A−1◦M ◦A, (10) wegetforthetransformation(A)andthesimpleform(R) (cid:32) (cid:112)β(s) 0 (cid:33) (cid:18) cos(∆µ) sin(∆µ) (cid:19) A = −√α √1 and R = −sin(∆µ) cos(∆µ) . (11) β β(s) ThisisjusttheCourant–Snydertransformationtogetβ,α,etc.and∆µisthetune. Thatis,theCourant– Snyderanalysisisjustanormal-formtransformofthelinearone-turnmatrix. Thistransformationworks in more than one dimension using the same formalism. The phase-space ellipse is transformed into a circle,whichistherepresentationofthenormalform,i.e.therotationshowninFig.1. Fig.2: Normal-formtransformforanon-linearOTM(schematic) ComparedwiththeCourant–Snyderanalysis,wehavethefollowingpropertiesofthismethod. i) The rotation angle (tune for the OTM) ∆µ is contained in the normalized map, and we have stabilityforrealvaluesofthisphaseadvance∆µ. ii) Opticalfunctions(β,α,etc.) areinthenormalizingmap. iii) Noneedtomakeanyassumptions,ansatzorapproximation. In the case of a more complicated OTM(e.g. Fig. 2), the transformation may be more complicated and wehavetoexpectthattherotationangledependsontheamplitude. Thisisthecasefornon-linearOTMs, whichwillbetreatedinalatersection. Ithasalreadybeenmentionedheretointroducethenormal-form transformationasageneralconcept. 4 3.3.2 Normalizedvariables Pleasenotethat (cid:18) (cid:19) (cid:18) (cid:19) x x n = A−1◦ (12) x(cid:48) x(cid:48) n inthissimplecaseisjustavariabletransformationtonew,normalizedvariables. 3.3.3 Action-anglevariables It is common practice to define action-angle variables. Once the particles ‘travel’ on a circle, we can introducenewvariablesforsimplificationandeasierinterpretationoftheresults. √ x2+x(cid:48)2 i) Radius(say: 2J,withJ = n n)isconstant(invariantofmotion): actionJ. 2 ii) Phaseadvancesbyconstantamount: angleΨ. The invariant of motion J should be the same at all locations in the ring and is separate from the angle ψ. Forthepropagationofcoordinatesaroundthering,botharerelevant. Thisseparationoftheinvariant fromtheangleagainbecomesimportantinalatersection. 3.3.4 Coupling Theformalismcaneasilybeusedtostudythecaseofcouplingbetweenthetwotransverseplanes,with themap(intwodimensions) (cid:18) (cid:19) M n T = , (13) m N whereM,m,N,nare2×2matrices. Inthecaseofcoupling,m (cid:54)= 0,n (cid:54)= 0. Wecantrytorewritethisusingthenormal-formalgorithms,asbefore: (cid:18) (cid:19) M n T = = VRV−1, (14) m N with (cid:18) (cid:19) (cid:18) (cid:19) A 0 γI C R = and V = . (15) 0 B −Ct γI Whathaveweobtained? ThematrixRisoursimplerotationintwoplanesandwehaveinaddition: i) AandB aretheone-turnmatricesforthe‘normalmodes’; ii) the matrix V transforms from the coordinates (x,x(cid:48),y,y(cid:48)) into the ‘normal-mode’ coordinates (w,w(cid:48),v,v(cid:48))viatheexpression(x,x(cid:48),y,y(cid:48)) = V(w,w(cid:48),v,v(cid:48)); iii) thematrixC containsthe‘couplingcoefficients’. 3.3.5 Multipleturns Normalformsareextremelyusefulwhenamapshouldbeappliedk times(e.g.k turns): thebrute-force methodwouldbetomultiplytheOTMktimes,whichcanbeveryelaborateandexpensiveincomputing time. Instead, we can first make a transformation into a normal form with a rotation matrix R, which contains the phase advance per turn µ. For k turns, we have to simply replace the phase advance µ by thephaseadvancefork turns,whichisofcoursek·µ(16). Mk(x,x(cid:48)) = ARk A−1(x,x(cid:48)) = ARk(X,X(cid:48)). (16) Transformingtherotationbackintotheusualformreturnsthek-turnmap. 5 4 Non-linearmaps In this section, I should like to introduce non-linear maps. I shall start with a linear map and than generalize. The effect of a (short) quadrupole depends linearly on amplitude as (rewritten from the matrixform) x x 0 (cid:126)z(s2) = xy(cid:48) = xy(cid:48) + k1·0xs1 . (17) y(cid:48) y(cid:48) k ·y s2 s1 1 s1 Or,inthealreadyknownconventionusingthematrixM,(cid:126)z(s ) = M·(cid:126)z(s ). 2 1 4.1 Symplecticity A key concept for the application of maps is a requirement called ‘symplecticity’. In a ring, not all possiblemapsareallowed. ThisrequiresforamatrixMthatitfulfilsthecondition MT·S ·M = S (18) with 0 1 0 0 −1 0 0 0 S = . (19) 0 0 0 1 0 0 −1 0 ThephysicalmeaningofthisrequirementisthatMisareapreservingand lim Mn = finite =⇒ detM = 1. (20) n→∞ ItshouldbenotedthatdetM = 1isrequired,butnotsufficient,forMtobesymplectic. 4.2 Taylormaps Theeffectofa(thin)sextupolewithstrengthk isintheformof(17) 2 x x 0 (cid:126)z(s2) = xy(cid:48) = xy(cid:48) + 21k2·(x02s1 −ys21) . (21) y(cid:48) y(cid:48) k ·(x ·y ) s2 s1 2 s1 s1 Wecanwriteitnowformallyas (cid:126)z(s ) = M◦(cid:126)z(s ). (22) 2 1 Here M is not a matrix but a non-linear map. It cannot be written in linear matrix form. We need somethinglike(forthevectorelementx) z(cid:126) (s ) = x(s ) = R ·x+R ·x(cid:48)+R ·y+··· . x 2 2 11 12 13 +T ·x2+T ·xx(cid:48)T ·x(cid:48)2+ 111 112 122 (23) +T ·xy+T ·xy(cid:48)+··· 113 114 +U ·x3+U ·x2x(cid:48)+··· 1111 1112 andtheequivalentforothervariables. Pleasenotethatx(s )nowdependsalsoonthesecondtransverse 2 variabley. 6 4.2.1 FormsofTaylormaps Wecanwrite(23)forj = 1,...,4: 4 4 4 (cid:88) (cid:88)(cid:88) z (s ) = R z (s )+ T z (s )z (s ). (24) j 2 jk k 1 jkl k 1 l 1 k=1 k=1 l=1 Ifthismapistruncatedafterthesecondorder,wecallitasecond-ordermapandformallywriteitas A = [R,T]. (25) 2 Higherorderscanbedefinedasneeded: 4 4 4 (cid:88)(cid:88) (cid:88) A = [R,T,U] =⇒ [R,T]+ U z (s )z (s )z (s ), (26) 3 jklm k 1 l 1 m 1 k=1 l=1m=1 whichistruncatedafterthethirdorder. Asanexample,thecompletesecond-ordermapfora(thick)sextupolewithlengthLandstrength K (intwodimensions)is (cid:16) (cid:17) x = x +Lx(cid:48) −K L2(x2−y2)+ L3(x x(cid:48) −y y(cid:48))+ L4(x(cid:48)2−y(cid:48)2) , 2 1 1 4 1 1 6 1 1 1 1 24 1 1 (cid:16) (cid:17) x(cid:48) = x(cid:48) −K L(x2−y2)+ L2(x x(cid:48) −y y(cid:48))+ L3(x(cid:48)2−y(cid:48)2) , 2 1 2 1 1 2 1 1 1 1 6 1 1 (cid:16) (cid:17) (27) y = y +Ly(cid:48) +K L2x y + L3(x y(cid:48) +y x(cid:48))+ L4(x(cid:48)y(cid:48)) , 2 1 1 4 1 1 6 1 1 1 1 24 1 1 (cid:16) (cid:17) y(cid:48) = y(cid:48) +K Lx y + L2(x y(cid:48) +y x(cid:48))+ L3(x(cid:48)y(cid:48)) . 2 1 2 1 1 2 1 1 1 1 6 1 1 ThedefinitionofK isnotunique;itcandifferbysomefactor,e.g. (cid:18)∂2x ∂2x k (cid:19) = k·x2 versus = ·x2 . (28) ∂t2 ∂t2 2 4.2.2 SymplecticityofTaylormaps Wehavearguedthatavitalrequirementformapsisthesymplecticity. Thismustholdalsofornon-linear maps;however: i) truncatedTaylorexpansionsarenotmatrices; ii) itistheassociatedJacobianmatrixJ whichmustfulfilthesymplecticitycondition(see(18)and (19)): ∂zi (cid:18) ∂zx(cid:19) J = 2 e.g.J = 2 , (29) ik ∂zk xy ∂zy 1 1 whereJ mustfulfilJt·S ·J = S. Ingeneral,J (cid:54)= const →foratruncatedTaylormap;thiscanbedifficulttofulfilforallz. ik Asanexample,wetakethesextupolemap(forsimplicityinonedimension)[21] (cid:16) (cid:17) x = x +Lx(cid:48) −K L2x2+ L3x x(cid:48) + L4x(cid:48)2+O(3) , 2 1 1 4 1 6 1 1 24 1 (cid:16) (cid:17) (30) x(cid:48) = x(cid:48) −K Lx2+ L2x x(cid:48) + L3x(cid:48)2+O(3) . 2 1 2 1 2 1 1 6 1 Thenwecancompute (cid:18) (cid:19) 0 1+∆S JT·S ·J = (cid:54)= S. (31) −1−∆S 0 WefindthatJ isnon-symplecticwiththeerror K ∆S = L4(L2x(cid:48)2+6Lxx(cid:48)+6x2). (32) 72 7 ∆x’ ∆x’ ∆x’ Fig.3: Movementofaparticlethroughthinelements 5 Thinelements From Eq. (32), we may get a hint of how to attack this problem. The error ∆S compared to the fully symplectic map depends on the fourth power of the sextupole length L4. This can be extended to other elementsaswellandforshortobjectstheerrormaybenegligible. Wecanattemptto‘make’allelements thin,i.e.shortenoughtohaveanegligiblenon-symplecticity. Forthispurpose,wedefinethinelements, i.e.anelementwithnolength,becausetheyavoidproblemswithsymplecticityofnon-linearmapssuch asTaylormaps. Theerrorinequation(32)becomeszero. 5.1 Conceptofthinelements Realmagnetshaveafinitelength, i.e.theyarethickmagnets. Thefieldandlengthareusedtocompute their effect, i.e. the map; in the simplest case it becomes a matrix (3). In passing, we have already mentionedtheequivalentmatrixforaquadrupolewithzerolength(4),sinceitisoftenusedinanalytical calculations. A severe consequence of thick elements is that they are not always linear elements (even not dipoles or quadrupoles). For thick, non-linear magnets a closed solution for maps often does not exist. Theprocedureweshallapplytoget‘thin’magnetsistoletthelengthgotozero,butkeepthefield integralfinite(constant)Asconsequences, thindipolesandquadrupolesarelinearelementsandallthin magnetsaremucheasiertouseandautomaticallysymplectic. Themovementofaparticlethroughthin elements is shown schematically in Fig. 3. The key is that there is no change of amplitudes x and y at theelement;onlythemomentax(cid:48) andy(cid:48) receiveanamplitude-dependentdeflection(kick) x(cid:48) → x(cid:48)+∆x(cid:48) and y(cid:48) → y(cid:48)+∆y(cid:48). (33) Modelling a magnet with a finite length by a thin magnet, we have to pay a price and must ask under which conditions this is a good strategy. We should expect that this approximation is valid when the finitelengthissmallorwhenthelengthdoesnotmatter. Themainquestionstoanswerareasfollows. i) Whathappenstotheaccuracyandtheimplicationsforthebeamdynamics? ii) Whatisthebestimplementationofthinmagnetstominimizethesideeffects? Weshouldstudytheseissueswithsomesimpleexamplesandgeneralizelater. 5.2 Accuracyofthinelements WestartagainwiththeexactmatrixforathickquadrupolewiththestrengthK andthelengthL. (cid:32) √ √ (cid:33) cosL· K √1 ·sinL· K M = √ √ K √ . (34) s→s+L − K ·sinL· K cosL· K Thismatrixdescribesthemotioninathickquadrupoleexactlyandwecanestimatetheerrorswemake byourapproximation. Althoughthisdemonstrationisdoneforaquadrupole,thefinalresultisvalidfor alllinearandnon-linearelements. 8 Fromtheexactmatrix (cid:32) √ √ (cid:33) cosL· K √1 ·sinL· K M = √ √ K √ , (35) s→s+L − K ·sinL· K cosL· K wemakeaTaylorexpansionin‘small’lengthL: (cid:18) 1 0 (cid:19) (cid:18) 0 1 (cid:19) (cid:18) −K 0 (cid:19) L0· +L1· +L2· 2 +··· (36) 0 1 −K 0 0 −K 2 andkeepuptothefirst-orderterminL: (cid:18) (cid:19) (cid:18) (cid:19) 1 0 0 1 M = L0· +L1· , (37) s→s+L 0 1 −K 0 (cid:18) (cid:19) 1 L M = +O(L2). (38) s→s+L −K ·L 1 Wemaketwoobservationsfromtheapproximation(38). i) ItisprecisetofirstorderO(L1)andtheerroristosecondorderO(L2). ii) WehavedetM =(cid:54) 1;therefore,itcannotbesymplectic(see18and19). Toensurethesymplecticity,weneedtomodifythematrix. Wecantrytoaddaterminthematrix: (cid:18) (cid:19) 1 L M = +O(L2) (39) s→s+L −K ·L 1 andweobtain (cid:18) (cid:19) 1 L M = . (40) s→s+L −K ·L 1−KL2 The matrix (40) is still precise to first order O(L1) but ‘symplectified’ by adding the term −KL2. The added term is inaccurate to second order (because of L2) and therefore the order of accuracy is not changedbythismodification. Thisprocedurerestoresthesymplecticity,butdoesnotchangethelevelof accuracy. Forthenextstep,wekeepuptothesecondorderinLfromtheTaylorexpansion(36): (cid:18) 1− 1KL2 L (cid:19) M = 2 +O(L3). (41) s→s+L −K ·L 1− 1KL2 2 ItisprecisetosecondorderO(L2)andthereforemoreaccuratethan(40),butagainnotsymplectic. Weproceedasbeforeandthesymplectificationnowlookslike (cid:18) 1− 1KL2 L−1KL3 (cid:19) M = 2 4 +O(L3). (42) s→s+L −K ·L 1− 1KL2 2 TheaccuracyismaintainedtosecondorderO(L2)anditisnowfullysymplectic. 9 K L Fig.4: SchematicpictureofaquadrupolewithlengthLandstrengthK (convention) K L L Fig.5: SchematicpictureofaquadrupolewithlengthLandakickwithstrengthK attheendoftheelement K L L/2 L/2 Fig.6: SchematicpictureofaquadrupolewithlengthLandakickwithstrengthK inthecentreoftheelement 5.2.1 Physicalmeaningofthesymplectification Inprinciple,onecouldgoonwithsuchascheme,butwhatisagoodstrategy? Themainissuesforusing animplementationareaccuracyandspeed. First,wehavealookatthesignificanceofthesymplectifica- tion, whichlooksratherarbitrary. Assumealinearelement(quadrupole)oflengthLandstrengthK as illustratedin(Fig.4). Averysimplewaytoapplyathin-lenskickisshownin(Fig.5). Thequadrupole istreatedasadriftlengthoflengthLfollowedbyathin-lengthkickwiththestrengthK ·L. Wecancomputethefullmatrixofthedriftandthekickandobtain (cid:18) (cid:19)(cid:18) (cid:19) (cid:18) (cid:19) 1 0 1 L 1 L = . (43) −K ·L 1 0 1 −K ·L 1−KL2 We find that this resembles the ‘symplectification’ we applied to the truncated map of order O(L1). Becauseofthesymmetry,wewouldgetthesameresultwhenweapplythekickbeforethedrift. Anotheroptionistoapplythethin-lenskickinthecentreoftheelement,asshowninFig.6. This timeweapplythekickinthecentreoftheelement,precededandfollowedbydriftspacesofthelength L/2. Themultiplicationofthethreematricesleadsusto (cid:18) 1− 1KL2 L−1KL3 (cid:19) M = 2 4 +O(L3). (44) s→s+L −K ·L 1− 1KL2 2 ThisisequivalenttothetruncatedandsymplectifiedmapoforderO(L2). Wecansummarizethetwooptionsasfollows. i) Onekickattheendorentry: error(inaccuracy)isoffirstorderO(L1). ii) Onekickinthecentre: error(inaccuracy)isofsecondorderO(L2). Wefindthatitisveryrelevanthowtoapplythinlensesandtheaimshouldbetobepreciseandfast(and simpletoimplement,forexampleinacomputerprogram). 10