ebook img

Mathematical analysis and applications. Selected topics PDF

750 Pages·2018·4.72 MB·English
by  Agarwal
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Mathematical analysis and applications. Selected topics

MathematicalAnalysisandApplications Mathematical Analysis and Applications SelectedTopics Editedby MichaelRuzhansky HemenDutta RaviP.Agarwal Thiseditionfirstpublished2018 ©2018JohnWiley&Sons,Inc. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfrom thistitleisavailableathttp://www.wiley.com/go/permissions. TherightofMichaelRuzhansky,HemenDutta,andRaviP.Agarwaltobeidentifiedastheeditors ofthisworkhasbeenassertedinaccordancewithlaw. RegisteredOffice JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWiley productsvisitusatwww.wiley.com. Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Some contentthatappearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats. LimitofLiability/DisclaimerofWarranty Thepublisherandtheauthorsmakenorepresentationsorwarrantieswithrespecttotheaccuracy orcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties;including withoutlimitationanyimpliedwarrantiesoffitnessforaparticularpurpose.Thisworkissold withtheunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.The adviceandstrategiescontainedhereinmaynotbesuitableforeverysituation.Inviewofon-going research,equipmentmodifications,changesingovernmentalregulations,andtheconstantflow ofinformationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderis urgedtoreviewandevaluatetheinformationprovidedinthepackageinsertorinstructionsfor eachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesinthe instructionsorindicationofusageandforaddedwarningsandprecautions.Thefactthatan organizationorwebsiteisreferredtointhisworkasacitationand/orpotentialsourceoffurther informationdoesnotmeanthattheauthororthepublisherendorsestheinformationthe organizationorwebsitemayprovideorrecommendationsitmaymake.Further,readersshould beawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthis workswaswrittenandwhenitisread.Nowarrantymaybecreatedorextendedbyany promotionalstatementsforthiswork.Neitherthepublishernortheauthorshallbeliableforany damagesarisingherefrom. LibraryofCongressCataloging-in-PublicationData: Names:Ruzhansky,M.(Michael),editor.|Dutta,Hemen,1981-editor.| Agarwal,RaviP.,editor. Title:Mathematicalanalysisandapplications:selectedtopics/editedby MichaelRuzhansky,HemenDutta,RaviP.Agarwal. Description:Hoboken,NJ:JohnWiley&Sons,2018.|Includes bibliographicalreferencesandindex.| Identifiers:LCCN2017048922(print)|LCCN2017054738(ebook)|ISBN 9781119414308(pdf)|ISBN9781119414339(epub)|ISBN9781119414346 (cloth) Subjects:LCSH:Mathematicalanalysis. Classification:LCCQA300(ebook)|LCCQA300.M2252018(print)|DDC 515–dc23 LCrecordavailableathttps://lccn.loc.gov/2017048922 CoverDesign:Wiley CoverImage:©LoudRedCreative/GettyImages Setin10/12ptWarnockProbySPiGlobal,Chennai,India PrintedintheUnitedStatesofAmerica 10 9 8 7 6 5 4 3 2 1 v Contents Preface xv AbouttheEditors xxi ListofContributors xxiii 1 SpacesofAsymptoticallyDevelopableFunctionsand Applications 1 SergioAlejandroCarrilloTorresandJorgeMozoFernández 1.1 IntroductionandSomeNotations 1 1.2 StrongAsymptoticExpansions 2 1.3 MonomialAsymptoticExpansions 7 1.4 MonomialSummabilityforSingularlyPerturbedDifferential Equations 13 1.5 PfaffianSystems 15 References 19 2 DualityforGaussianProcessesfromRandomSigned Measures 23 PalleE.T.JorgensenandFengTian 2.1 Introduction 23 2.2 ReproducingKernelHilbertSpaces(RKHSs)intheMeasurable Category 24 2.3 ApplicationstoGaussianProcesses 30 2.4 ChoiceofProbabilitySpace 34 2.5 ADuality 37 2.A StochasticProcesses 40 2.B OverviewofApplicationsofRKHSs 45 Acknowledgments 50 References 51 vi Contents 3 Many-BodyWaveScatteringProblemsforSmallScatterers andCreatingMaterialswithaDesiredRefraction Coefficient 57 AlexanderG.Ramm 3.1 Introduction 57 3.2 DerivationoftheFormulasforOne-BodyWaveScattering Problems 62 3.3 Many-BodyScatteringProblem 65 3.3.1 TheCaseofAcousticallySoftParticles 68 3.3.2 WaveScatteringbyManyImpedanceParticles 70 3.4 CreatingMaterialswithaDesiredRefractionCoefficient 71 3.5 ScatteringbySmallParticlesEmbeddedinanInhomogeneous Medium 72 3.6 Conclusions 72 References 73 4 GeneralizedConvexFunctionsandtheirApplications 77 AdemKiliçmanandWedadSaleh 4.1 BriefIntroduction 77 4.2 GeneralizedE-ConvexFunctions 78 4.3 E𝛼-Epigraph 84 4.4 Generalizeds-ConvexFunctions 85 4.5 ApplicationstoSpecialMeans 96 References 98 5 SomePropertiesandGeneralizationsoftheCatalan,Fuss, andFuss–CatalanNumbers 101 FengQiandBai-NiGuo 5.1 TheCatalanNumbers 101 5.1.1 ADefinitionoftheCatalanNumbers 101 5.1.2 TheHistoryoftheCatalanNumbers 101 5.1.3 AGeneratingFunctionoftheCatalanNumbers 102 5.1.4 SomeExpressionsoftheCatalanNumbers 102 5.1.5 IntegralRepresentationsoftheCatalanNumbers 103 5.1.6 AsymptoticExpansionsoftheCatalanFunction 104 5.1.7 CompleteMonotonicityoftheCatalanNumbers 105 5.1.8 InequalitiesoftheCatalanNumbersandFunction 106 5.1.9 TheBellPolynomialsoftheSecondKindandtheBessel Polynomials 109 5.2 TheCatalan–QiFunction 111 5.2.1 TheFussNumbers 111 5.2.2 ADefinitionoftheCatalan–QiFunction 111 5.2.3 SomeIdentitiesoftheCatalan–QiFunction 112 5.2.4 IntegralRepresentationsoftheCatalan–QiFunction 114 Contents vii 5.2.5 AsymptoticExpansionsoftheCatalan–QiFunction 115 5.2.6 CompleteMonotonicityoftheCatalan–QiFunction 116 5.2.7 Schur-ConvexityoftheCatalan–QiFunction 118 5.2.8 GeneratingFunctionsoftheCatalan–QiNumbers 118 5.2.9 ADoubleInequalityoftheCatalan–QiFunction 118 5.2.10 Theq-Catalan–QiNumbersandProperties 119 5.2.11 TheCatalanNumbersandthek-Gammaandk-BetaFunctions 119 5.2.12 SeriesIdentitiesInvolvingtheCatalanNumbers 119 5.3 TheFuss–CatalanNumbers 119 5.3.1 ADefinitionoftheFuss–CatalanNumbers 119 5.3.2 AProduct-RatioExpressionoftheFuss–CatalanNumbers 120 5.3.3 CompleteMonotonicityoftheFuss–CatalanNumbers 120 5.3.4 ADoubleInequalityfortheFuss–CatalanNumbers 121 5.4 TheFuss–Catalan–QiFunction 121 5.4.1 ADefinitionoftheFuss–Catalan–QiFunction 121 5.4.2 AProduct-RatioExpressionoftheFuss–Catalan–QiFunction 122 5.4.3 IntegralRepresentationsoftheFuss–Catalan–QiFunction 123 5.4.4 CompleteMonotonicityoftheFuss–Catalan–QiFunction 124 5.5 SomePropertiesforRatiosofTwoGammaFunctions 124 5.5.1 AnIntegralRepresentationandCompleteMonotonicity 125 5.5.2 AnExponentialExpansionfortheRatioofTwoGamma Functions 125 5.5.3 ADoubleInequalityfortheRatioofTwoGammaFunctions 125 5.6 SomeNewResultsontheCatalanNumbers 126 5.7 OpenProblems 126 Acknowledgments 127 References 127 6 TraceInequalitiesofJensenTypeforSelf-adjointOperators inHilbertSpaces:ASurveyofRecentResults 135 SilvestruSeverDragomir 6.1 Introduction 135 6.1.1 Jensen’sInequality 135 6.1.2 TracesforOperatorsinHilbertSpaces 138 6.2 Jensen’sTypeTraceInequalities 141 6.2.1 SomeTraceInequalitiesforConvexFunctions 141 6.2.2 SomeFunctionalProperties 145 6.2.3 SomeExamples 151 6.2.4 MoreInequalitiesforConvexFunctions 154 6.3 ReversesofJensen’sTraceInequality 157 6.3.1 AReverseofJensen’sInequality 157 6.3.2 SomeExamples 163 6.3.3 FurtherReverseInequalitiesforConvexFunctions 165 6.3.4 SomeExamples 169 viii Contents 6.3.5 ReversesofHölder’sInequality 174 6.4 Slater’sTypeTraceInequalities 177 6.4.1 Slater’sTypeInequalities 177 6.4.2 FurtherReverses 180 References 188 7 SpectralSynthesisandItsApplications 193 LászlóSzékelyhidi 7.1 Introduction 193 7.2 BasicConceptsandFunctionClasses 195 7.3 DiscreteSpectralSynthesis 203 7.4 NondiscreteSpectralSynthesis 217 7.5 SphericalSpectralSynthesis 219 7.6 SpectralSynthesisonHypergroups 238 7.7 Applications 248 Acknowledgments 252 References 252 8 VariousUlam–HyersStabilitiesofEuler–Lagrange–Jensen General(a,b;k=a+b)-SexticFunctionalEquations 255 JohnMichaelRassiasandNarasimmanPasupathi 8.1 BriefIntroduction 255 8.2 GeneralSolutionofEuler–Lagrange–JensenGeneral (a,b;k =a+b)-SexticFunctionalEquation 257 8.3 StabilityResultsinBanachSpace 258 8.3.1 BanachSpace:DirectMethod 258 8.3.2 BanachSpace:FixedPointMethod 261 8.4 StabilityResultsinFelbin’sTypeSpaces 267 8.4.1 Felbin’sTypeSpaces:DirectMethod 268 8.4.2 Felbin’sTypeSpaces:FixedPointMethod 269 8.5 IntuitionisticFuzzyNormedSpace:StabilityResults 270 8.5.1 IFNS:DirectMethod 272 8.5.2 IFNS:FixedPointMethod 279 References 281 9 ANoteontheSplitCommonFixedPointProblemandits VariantForms 283 AdemKiliçmanandL.B.Mohammed 9.1 Introduction 283 9.2 BasicConceptsandDefinitions 284 9.2.1 Introduction 284 9.2.2 VectorSpace 284 9.2.3 HilbertSpaceanditsProperties 286 9.2.4 BoundedLinearMapanditsProperties 288 Contents ix 9.2.5 SomeNonlinearOperators 289 9.2.6 ProblemFormulation 294 9.2.7 PreliminaryResults 294 9.2.8 StrongConvergencefortheSplitCommonFixed-PointProblemsfor TotalQuasi-AsymptoticallyNonexpansiveMappings 296 9.2.9 StrongConvergencefortheSplitCommonFixed-PointProblemsfor DemicontractiveMappings 302 9.2.10 ApplicationtoVariationalInequalityProblems 306 9.2.11 OnSynchronalAlgorithmsforFixedandVariationalInequality ProblemsinHilbertSpaces 307 9.2.12 Preliminaries 307 9.3 ANoteontheSplitEqualityFixed-PointProblemsinHilbert Spaces 315 9.3.1 ProblemFormulation 315 9.3.2 Preliminaries 316 9.3.3 TheSplitFeasibilityandFixed-PointEqualityProblemsfor Quasi-NonexpansiveMappingsinHilbertSpaces 316 9.3.4 TheSplitCommonFixed-PointEqualityProblemsfor Quasi-NonexpansiveMappingsinHilbertSpaces 320 9.4 NumericalExample 322 9.5 TheSplitFeasibilityandFixedPointProblemsfor Quasi-NonexpansiveMappingsinHilbertSpaces 328 9.5.1 ProblemFormulation 328 9.5.2 PreliminaryResults 328 9.6 Ishikawa-TypeExtra-GradientIterativeMethodsfor Quasi-NonexpansiveMappingsinHilbertSpaces 329 9.6.1 ApplicationtoSplitFeasibilityProblems 334 9.7 Conclusion 336 References 337 10 StabilitiesandInstabilitiesofRationalFunctionalEquations andEuler–Lagrange–Jensen(a,b)-SexticFunctional Equations 341 JohnMichaelRassias,KrishnanRavi,andBeriV.SenthilKumar 10.1 Introduction 341 10.1.1 GrowthofFunctionalEquations 342 10.1.2 ImportanceofFunctionalEquations 342 10.1.3 FunctionalEquationsRelevanttoOtherFields 343 10.1.4 DefinitionofFunctionalEquationwithExamples 343 10.2 UlamStabilityProblemforFunctionalEquation 344 10.2.1 𝜖-StabilityofFunctionalEquation 344 10.2.2 StabilityInvolvingSumofPowersofNorms 345 10.2.3 StabilityInvolvingProductofPowersofNorms 346 10.2.4 StabilityInvolvingaGeneralControlFunction 347 x Contents 10.2.5 StabilityInvolvingMixedProduct–SumofPowersofNorms 347 10.2.6 ApplicationofUlamStabilityTheory 348 10.3 VariousFormsofFunctionalEquations 348 10.4 Preliminaries 353 10.5 RationalFunctionalEquations 355 10.5.1 ReciprocalTypeFunctionalEquation 355 10.5.2 SolutionofReciprocalTypeFunctionalEquation 356 10.5.3 GeneralizedHyers–UlamStabilityofReciprocalTypeFunctional Equation 357 10.5.4 Counter-Example 360 10.5.5 GeometricalInterpretationofReciprocalTypeFunctional Equation 362 10.5.6 AnApplicationofEquation(10.41)toElectricCircuits 364 10.5.7 Reciprocal-QuadraticFunctionalEquation 364 10.5.8 GeneralSolutionofReciprocal-QuadraticFunctional Equation 366 10.5.9 GeneralizedHyers–UlamStabilityofReciprocal-Quadratic FunctionalEquations 368 10.5.10 Counter-Examples 373 10.5.11 Reciprocal-CubicandReciprocal-QuarticFunctional Equations 375 10.5.12 Hyers–UlamStabilityofReciprocal-CubicandReciprocal-Quartic FunctionalEquations 375 10.5.13 Counter-Examples 380 10.6 Euler-Lagrange–Jensen(a,b;k =a+b)-SexticFunctional Equations 384 10.6.1 GeneralizedUlam–HyersStabilityofEuler-Lagrange-JensenSextic FunctionalEquationUsingFixedPointMethod 384 10.6.2 Counter-Example 387 10.6.3 GeneralizedUlam–HyersStabilityofEuler-Lagrange-JensenSextic FunctionalEquationUsingDirectMethod 389 References 395 11 AttractoroftheGeneralizedContractiveIteratedFunction System 401 MujahidAbbasandTalatNazir 11.1 IteratedFunctionSystem 401 11.2 GeneralizedF-contractiveIteratedFunctionSystem 407 11.3 IteratedFunctionSysteminb-MetricSpace 414 11.4 GeneralizedF-ContractiveIteratedFunctionSysteminb-Metric Space 420 References 426

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.