ebook img

Math 2001: Introduction to Discrete Mathematics PDF

126 Pages·2019·0.408 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Math 2001: Introduction to Discrete Mathematics

Math 2001 – Introduction to Discrete Mathematics Agn`es Beaudry June 24, 2019 Contents 1 Sets 6 1.1 Monday, January 17 : First Day of Class . . . . . . . . . . . . 6 1.1.1 Sets and Subsets . . . . . . . . . . . . . . . . . . . . . 7 1.2 Friday, January 19 . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.1 Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.2 Russell’s Paradox . . . . . . . . . . . . . . . . . . . . . 10 1.3 Monday, January 22 . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.1 Set-builder notation . . . . . . . . . . . . . . . . . . . 12 1.3.2 Cardinality, informally . . . . . . . . . . . . . . . . . . 12 1.3.3 The Cartesian Product . . . . . . . . . . . . . . . . . . 13 1.4 Wednesday, January 24 . . . . . . . . . . . . . . . . . . . . . . 16 1.4.1 Cardinality Continued . . . . . . . . . . . . . . . . . . 16 1.4.2 Note on the empty set . . . . . . . . . . . . . . . . . . 16 1.4.3 Power Set . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5 Friday, January 26 . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.1 Intersections, Unions, Difference and Complements . . 18 1.5.2 Venn Diagrams . . . . . . . . . . . . . . . . . . . . . . 20 1.6 Monday, January 29 . . . . . . . . . . . . . . . . . . . . . . . 21 1.6.1 Index Sets . . . . . . . . . . . . . . . . . . . . . . . . . 21 2 Logic 25 2.1 Wednesday, January 31 . . . . . . . . . . . . . . . . . . . . . . 25 2.1.1 Statements . . . . . . . . . . . . . . . . . . . . . . . . 25 2.1.2 And, Or . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1.3 Not . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2 Friday, February 2 . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.1 LaTeX . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3 Monday, February 5 . . . . . . . . . . . . . . . . . . . . . . . 31 1 2.3.1 Conditional Statements . . . . . . . . . . . . . . . . . . 31 2.4 Wednesday, February 7 . . . . . . . . . . . . . . . . . . . . . . 35 2.4.1 The Converse . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.2 The Contrapositive . . . . . . . . . . . . . . . . . . . . 36 2.4.3 Biconditional Statements . . . . . . . . . . . . . . . . . 37 2.4.4 Negating statements . . . . . . . . . . . . . . . . . . . 38 2.5 Friday, February 9 . . . . . . . . . . . . . . . . . . . . . . . . 40 2.6 Monday, February 12 . . . . . . . . . . . . . . . . . . . . . . . 41 2.6.1 Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.6.2 Quantifyers . . . . . . . . . . . . . . . . . . . . . . . . 41 2.6.3 Logical Inference . . . . . . . . . . . . . . . . . . . . . 44 2.7 Wednesday, February 14 . . . . . . . . . . . . . . . . . . . . . 46 2.7.1 Broad Strokes for the Topic of Proofs . . . . . . . . . . 46 2.8 Friday, February 16 . . . . . . . . . . . . . . . . . . . . . . . . 48 2.9 Monday, February 19 . . . . . . . . . . . . . . . . . . . . . . . 49 2.9.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 50 2.9.2 Examples of Direct and Contrapositive Proofs . . . . . 51 2.10 Wednesday, February 21 . . . . . . . . . . . . . . . . . . . . . 52 2.10.1 Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.10.2 Without Loss of Generality . . . . . . . . . . . . . . . 54 2.11 Friday, February 23 . . . . . . . . . . . . . . . . . . . . . . . . 56 2.11.1 Without Loss of generality continued . . . . . . . . . . 56 2.11.2 Proof by Contradiction . . . . . . . . . . . . . . . . . . 57 2.12 Monday, February 26 . . . . . . . . . . . . . . . . . . . . . . . 59 2.12.1 Proof by Contradiction Continued . . . . . . . . . . . . 59 2.12.2 Congruence of Integers . . . . . . . . . . . . . . . . . . 60 2.13 Wednesday, February 28 . . . . . . . . . . . . . . . . . . . . . 61 2.13.1 If and only if, and the following are equivalent. . . . . . 61 2.14 Friday, March 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.15 Monday, March 5 . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.16 Wednesday, March 7 . . . . . . . . . . . . . . . . . . . . . . . 65 2.16.1 The following are equivalent (TFAE) . . . . . . . . . . 65 2.16.2 Existence Proofs . . . . . . . . . . . . . . . . . . . . . 67 2.16.3 Existence and Uniqueness Proofs . . . . . . . . . . . . 68 2.17 Friday, March 9 . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2.17.1 Proofs with sets . . . . . . . . . . . . . . . . . . . . . . 70 2.17.2 Proving x ∈ X . . . . . . . . . . . . . . . . . . . . . . 70 2.17.3 Proving X ⊆ Y . . . . . . . . . . . . . . . . . . . . . . 71 2 2.17.4 Proving X (cid:54)⊆ Y . . . . . . . . . . . . . . . . . . . . . . 72 2.17.5 Proving X = Y . . . . . . . . . . . . . . . . . . . . . . 73 2.18 Monday, March 12 . . . . . . . . . . . . . . . . . . . . . . . . 76 2.18.1 (Weak) Mathematical Induction . . . . . . . . . . . . . 76 2.19 Wednesday, March 14 . . . . . . . . . . . . . . . . . . . . . . . 81 2.19.1 Weak Induction Continued . . . . . . . . . . . . . . . . 81 2.19.2 Strong Mathematical Induction Continued . . . . . . . 81 2.20 Friday, March 16 . . . . . . . . . . . . . . . . . . . . . . . . . 85 2.21 Monday, March 19 . . . . . . . . . . . . . . . . . . . . . . . . 85 2.22 Wednesday, March 21 . . . . . . . . . . . . . . . . . . . . . . . 85 2.23 Friday, March 23 . . . . . . . . . . . . . . . . . . . . . . . . . 85 2.24 Monday, April 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 86 2.24.1 Relations . . . . . . . . . . . . . . . . . . . . . . . . . 86 2.24.2 Equivalence Relations . . . . . . . . . . . . . . . . . . 87 2.25 Wednesday, April 4 . . . . . . . . . . . . . . . . . . . . . . . . 89 2.25.1 Equivalence classes . . . . . . . . . . . . . . . . . . . . 89 2.26 Friday, April 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 2.27 Monday, April 9 . . . . . . . . . . . . . . . . . . . . . . . . . . 93 2.27.1 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . 93 2.28 Wednesday, April 11 . . . . . . . . . . . . . . . . . . . . . . . 95 2.28.1 Partitions, continued . . . . . . . . . . . . . . . . . . . 95 2.28.2 Integers modulo n . . . . . . . . . . . . . . . . . . . . . 96 2.29 Friday, April 13 . . . . . . . . . . . . . . . . . . . . . . . . . . 98 2.29.1 Integers modulo n finished . . . . . . . . . . . . . . . . 98 2.30 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 2.31 Monday, April 16 . . . . . . . . . . . . . . . . . . . . . . . . . 101 2.31.1 Functions continued . . . . . . . . . . . . . . . . . . . 101 2.31.2 Injectivity and Surjectivity . . . . . . . . . . . . . . . . 102 2.32 Wednesday, April 18 . . . . . . . . . . . . . . . . . . . . . . . 104 2.32.1 Injectivity and Surjectivity . . . . . . . . . . . . . . . . 104 2.33 Friday, April 20 . . . . . . . . . . . . . . . . . . . . . . . . . . 106 2.33.1 The Pigeon-Hole Principle . . . . . . . . . . . . . . . . 107 2.34 Monday, April 23 . . . . . . . . . . . . . . . . . . . . . . . . . 109 2.34.1 Image and Preimage . . . . . . . . . . . . . . . . . . . 109 2.34.2 Composition . . . . . . . . . . . . . . . . . . . . . . . . 110 2.35 Wednesday, April 25 . . . . . . . . . . . . . . . . . . . . . . . 112 2.35.1 Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . 112 2.35.2 Cardinality . . . . . . . . . . . . . . . . . . . . . . . . 113 3 2.36 Friday, April 27 . . . . . . . . . . . . . . . . . . . . . . . . . . 115 2.36.1 Cardinality Continued . . . . . . . . . . . . . . . . . . 115 2.37 Monday, April 30 . . . . . . . . . . . . . . . . . . . . . . . . . 117 2.37.1 Cardinality Continued . . . . . . . . . . . . . . . . . . 117 2.38 Wednesday, May 2 . . . . . . . . . . . . . . . . . . . . . . . . 122 2.38.1 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4 Disclaimer. The following notes are my course notes, and may contains mistakes and typos. They are shamelessly based on book for the course: • Book of Proof by Richard Hammack 5 Chapter 1 Sets 1.1 Monday, January 17 : First Day of Class Intro to discrete mathematics is a class designed to teach you the language of higher mathematics. Sometimes, it may be more like a language class than a math class. We will learn the rules of logic, how to make mathematical statements and how to prove them. We will answer questions like: what does it mean to do mathe- matics? What does it mean to prove something? You will learn about some open problems and various areas. Textbook: The primary source will distributed electronically on the website as the course progresses. The official textbook is • Book of Proof, by Richard Hammack which available for free online. Topics: Below is a list of the topics we will cover : 6 • Basic Set Theory • Basic Logic • Mathematical Proofs • Mathematical Induction • Counting Techniques • Relations and Functions • Cardinality 1.1.1 Sets and Subsets Definition 1.1 (Cantor’s Na¨ıve definition, 1882). “A set is a gathering to- gether into a whole of definite, distinct objects of our perception or of our thought — which are called elements of the set.” So, a set is a “bunch of things”. Notation. If A is a set and x is an element of A, we write x ∈ A or A (cid:51) x. If x is not an element of the set A, we write x (cid:54)∈ A or A (cid:54)(cid:51) x. The symbols { and } are used to denote a set. For example {a,b,c} is a set containing three elements called a, b and c. Example 1.2. • {0,1} 7 • N = {1,2,3,...} • Z = {0,1,−1,2,−2,...} • X = {A,B,C,..., X,Y,Z} • ∅ = { }. This is the set with no elements, called the empty set. Definition 1.3. Suppose that A and B are sets. We say that A = B if the elements of A are the same as the elements of B. Warning 1.4. Sets don’t have repetitions and are not ordered. • {a,b,c} = {c,b,a} • {1,1,2,3} = {1,2,3} = {2,3,1} Question 1.5. Is {0,1} equal to {0,{1}}? Answer. No, these sets do not contain the same elements. Although they both contain 0, the first set contains 1 while the second set contains the “set containing 1”. Here is an imperfect analogy: 1 is to {1} as a dog is to a picture of a dog. 8 1.2 Friday, January 19 1.2.1 Subsets Definition 1.6. A set A is a subset of B if all of the elements of A are also elements of B. Notation. If A is a subset of B, we write A ⊆ B. If A ⊆ B but A (cid:54)= B, then sometimes write A (cid:40) B. If A is not a subset of B, we write A (cid:54)⊆ B. Example 1.7. • {a,b} ⊆ {a,b,c} • {a,b} (cid:40) {a,b,c} • {a,b,c} ⊆ {a,b,c} • N ⊆ Z • N (cid:40) Z • {z} (cid:54)⊆ {a,b,c} We ended last class with the question of whether or not the set {0,1} is equal to {0,{1}}. And this brought up another good question. Question 1.8. Are elements of a set always also subsets of that set? We came to the conclusion that the answer to both questions was NO. Intuitively, a rock and a box containing a rock are different. One is a rock, the other is something that contains a rock, but they are not the same thing. Remark 1.9. Saying that the answer to Question 1.8 is NO does not mean that there cannot be examples when this happens: Question 1.10. Are there elements of the set {1,{1}} which are also subsets of that set? 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.