ebook img

Materials Processing and Crystal Growth for Thermoelectrics PDF

124 Pages·2019·38.721 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Materials Processing and Crystal Growth for Thermoelectrics

Materials Processing and Crystal Growth for Thermoelectrics Edited by George S. Nolas Printed Edition of the Special Issue Published in Crystals www.mdpi.com/journal/crystals Materials Processing and Crystal Growth for Thermoelectrics Materials Processing and Crystal Growth for Thermoelectrics SpecialIssueEditor GeorgeS.Nolas MDPI•Basel•Beijing•Wuhan•Barcelona•Belgrade Special Issue Editor George S. Nolas University of South Florida USA Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Catalysts (ISSN 2073-4344) from 2017 to 2018 (available at: https://www.mdpi.com/journal/crystals/special issues/thermoelectrics). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName,A.A.; LastName,B.B.; LastName,C.C.ArticleTitle. JournalNameYear,ArticleNumber, PageRange. ISBN978-3-03897-588-5(Pbk) ISBN978-3-03897-589-2(PDF) (cid:2)c 2019bytheauthors. ArticlesinthisbookareOpenAccessanddistributedundertheCreative Commons Attribution (CC BY) license, which allows users to download, copy and build upon publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum disseminationandawiderimpactofourpublications. ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND. Contents AbouttheSpecialIssueEditor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Prefaceto”MaterialsProcessingandCrystalGrowthforThermoelectrics”. . . . . . . . . . . . ix MinaRastegaralam,ChangheeLeeandUrszulaDettlaff-Weglikowska Simultaneous Enhancement of Electrical Conductivity and Seebeck Coefficient of [6,6]-Phenyl-C71ButyricAcidMethylEster(PC70BM)byAddingCo-Solvents Reprintedfrom:Crystals2018,8,237,doi:10.3390/cryst8060237. . . . . . . . . . . . . . . . . . . . 1 MinaRastegaralam,ChangheeLeeandUrszulaDettlaff-Weglikowska Solvent-DependentThermoelectricPropertiesofPTB7andEffectof1,8-DiiodooctaneAdditive Reprintedfrom:Crystals2017,7,292,doi:10.3390/cryst7100292. . . . . . . . . . . . . . . . . . . . 10 TomGrossfeld,ArielSheskin,YanivGelbsteinandYaronAmouyal Microstructure Evolution of Ag-Alloyed PbTe-Based Compounds and Implications for ThermoelectricPerformance Reprintedfrom:Crystals2017,7,281,doi:10.3390/cryst7090281. . . . . . . . . . . . . . . . . . . . 18 FelixKaiser,PaulSimon,UlrichBurkhardt,BerndKieback,YuriGrinandIgorVeremchuk Spark Plasma Sintering of Tungsten Oxides WOx (2.50 ≤ x ≤ 3): Phase Analysis and ThermoelectricProperties Reprintedfrom:Crystals2017,7,271,doi:10.3390/cryst7090271. . . . . . . . . . . . . . . . . . . . 33 RuiLiu,XingTan,GuangkunRen,YaochunLiu,ZhifangZhou,ChanLiu,YuanhuaLinand CewenNan Enhanced Thermoelectric Performance of Te-Doped Bi2Se3−xTex Bulks by Self-Propagating High-TemperatureSynthesis Reprintedfrom:Crystals2017,7,257,doi:10.3390/cryst7090257. . . . . . . . . . . . . . . . . . . . 47 DeanHobbis,YameiLiu,KayaWei,TerryM.TrittandGeorgeS.Nolas HighTemperatureTransportPropertiesofYbandInDouble-Filledp-TypeSkutterudites Reprintedfrom:Crystals2017,7,256,doi:10.3390/cryst7090256. . . . . . . . . . . . . . . . . . . . 55 WeonHoShin,JeongSeopYoon,MahnJeong,JaeMinSong,SeyunKim,JongWookRoh, SoonilLee,WonSeonSeo,SungWngKimandKyuHyoungLee MicrostructureAnalysisandThermoelectricPropertiesofMelt-SpunBi-Sb-TeCompounds Reprintedfrom:Crystals2017,7,180,doi:10.3390/cryst7060180. . . . . . . . . . . . . . . . . . . . 62 Viktoriia Ohorodniichuk, Anne Dauscher, Elsa Branco Lopes, Sylvie Migot, Christophe Candolfi and Bertrand Lenoir Structural and Electrical Properties Characterization of Sb1.52Bi0.48Te3.0 Melt-Spun Ribbons Reprintedfrom:Crystals2017,7,172,doi:10.3390/cryst7060172. . . . . . . . . . . . . . . . . . . . 71 Yun-QiaoTang,Zhen-HuaGeandJingFeng SynthesisandThermoelectricPropertiesofCopperSulfidesviaSolutionPhaseMethodsand SparkPlasmaSintering Reprintedfrom:Crystals2017,7,141,doi:10.3390/cryst7050141. . . . . . . . . . . . . . . . . . . . 88 DegangZhao,XuezhenWangandDiWu EnhancedThermoelectricPropertiesofGraphene/Cu2SnSe3Composites Reprintedfrom:Crystals2017,7,71,doi:10.3390/cryst7030071 . . . . . . . . . . . . . . . . . . . . 98 v About the Special Issue Editor GeorgeS.Nolas, DistinguishedUniversityProfessor, UniversityofSouthFlorida. Prof. Nolasis aFellowoftheAmericanAssociationfortheAdvancementofScienceandtheAmericanPhysical Society. Prof. Nolas’ expertise is in the area of condensed matter physics and materials science, includingmaterialsforthermoelectricspowergenerationandrefrigerationapplications.Prof.Nolas holdsseveralpatents,haspublishedover200peer-reviewedjournalarticles,severalbookchapters, and two books including the foremost text in the field of thermoelectrics. Prof. Nolas has also beenhonoredwithfourteachingandmentorshipawards, andhisstudentshavebeenrecognized bydissertationawards,researchscholarships,andfellowships. vii Preface to ”Materials Processing and Crystal Growth for Thermoelectrics” A growing public awareness has resulted in consensus that new technologies for renewable energy must be realized in the near future. This has lead to a focus on several different solutions to this problem. Thermoelectrics can play a role in this regard, and is one technology that continues to be of interest. Thermoelectric devices are especially attractive since they have no moving parts, are very reliable, and allow for a wide range of applications, from industrial to consumer applications. In order to efficiently convert energy using thermoelectricity, certain material properties are desirable. This includes a high electrical conductivity, σ, to maintain high charge current, a high Seebeck coefficient, S, to maintain a high voltage drop, and a low thermal conductivity, κ, to maintain the temperature gradient. The performance of a thermoelectric device is characterized by the figure of merit, a dimensionless parameter defined as ZT = S2σ/κ, where T is the absolute temperature. All other aspects being equal, materials with larger ZT values result in more efficient thermoelectric devices. New materials research is therefore essential. It is our hope that the manuscripts contained in this volume will provide a concise reference to some of the current research in the field of thermoelectric materials research. GeorgeS.Nolas SpecialIssueEditor ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.