ebook img

Manufacturing Intelligence for Industrial Engineering: Methods for System Self-organization, Learning, and Adaptation PDF

406 Pages·2010·3.754 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Manufacturing Intelligence for Industrial Engineering: Methods for System Self-organization, Learning, and Adaptation

Manufacturing Intelligence for Industrial Engineering: Methods for System Self-Organization, Learning, and Adaptation Zude Zhou Wuhan University of Technology, China Huaiqing Wang City University of Hong Kong, Hong Kong Ping Lou Wuhan University of Technology, China EnginEEring sciEncE rEfErEncE Hershey • New York Director of Editorial Content: Kristin Klinger Director of Book Publications: Julia Mosemann Acquisitions Editor: Lindsay Johnston Development Editor: Joel Gamon Publishing Assistant: Deanna Zombro Typesetter: Michael Brehm Production Editor: Jamie Snavely Cover Design: Lisa Tosheff Printed at: Yurchak Printing Inc. Published in the United States of America by Engineering Science Reference (an imprint of IGI Global) 701 E. Chocolate Avenue Hershey PA 17033 Tel: 717-533-8845 Fax: 717-533-8661 E-mail: [email protected] Web site: http://www.igi-global.com/reference Copyright © 2010 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher. Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark. Library of Congress Cataloging-in-Publication Data Zhou, Zude, 1946- Manufacturing intelligence for industrial engineering : methods for system self-organization, learning, and adaptation / by Zude Zhou, Huaiqing Wang, and Ping Lou. p. cm. Includes bibliographical references and index. Summary: "This book focuses on the latest innovations in the process of manufacturing in engineering"--Provided by publisher. ISBN 978-1-60566-864-2 (hardcover) -- ISBN 978-1-60566-865-9 (ebook) 1. Technological innovations. 2. Industrial engineering. 3. Artificial intelligence. I. Wang, Huaiqing. II. Lou, Ping. III. Title. T173.8.Z486 2010 670.285--dc22 2009034472 British Cataloguing in Publication Data A Cataloguing in Publication record for this book is available from the British Library. All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the authors, but not necessarily of the publisher. Table of Contents Foreword .............................................................................................................................................vii Preface ..................................................................................................................................................ix Chapter 1 Intelligent Manufacturing and Manufacturing Intelligence ....................................................................1 Introduction .............................................................................................................................................1 Manufacturing Activities .........................................................................................................................2 Artificial Intelligence and Manufacturing Intelligence ...........................................................................3 Intelligent Manufacturing .......................................................................................................................4 Summary ...............................................................................................................................................11 References .............................................................................................................................................11 Chapter 2 Knowledge-Based Systems ...................................................................................................................13 Introduction ...........................................................................................................................................13 The Process of Building KBS-Knowledge Engineering ........................................................................16 KBS Evaluation .....................................................................................................................................31 Applications of KBS in Intelligent Manufacturing ................................................................................34 Case Study .............................................................................................................................................36 Summary ...............................................................................................................................................44 References .............................................................................................................................................44 Chapter 3 Intelligent Agents and Multi-Agent Systems ........................................................................................47 Intelligent Agents ..................................................................................................................................47 Basic Theories of Multi-Agent Systems .................................................................................................52 Communication and Interaction Protocol in MAS ...............................................................................59 Cooperation and Behavior Coordination .............................................................................................64 Applications of Agent in Intelligent Manufacturing .............................................................................70 Case Study .............................................................................................................................................74 Summary ...............................................................................................................................................81 References .............................................................................................................................................81 Chapter 4 Data Mining and Knowledge Discovery ...............................................................................................84 Introduction ...........................................................................................................................................84 Basic Analysis .......................................................................................................................................92 Methods and Tools for DMKD ..............................................................................................................96 Application of DM and KD in Manufacturing Systems ......................................................................102 Case Study ...........................................................................................................................................105 Summary .............................................................................................................................................109 References ...........................................................................................................................................110 Chapter 5 Computational Intelligence .................................................................................................................111 Introduction .........................................................................................................................................111 Artificial Neural Networks ..................................................................................................................113 Fuzzy System .......................................................................................................................................120 Evolutionary Computation ..................................................................................................................125 Case Study ...........................................................................................................................................130 Summary .............................................................................................................................................134 References ...........................................................................................................................................134 Chapter 6 Business Process Modeling and Information Systems Modeling .......................................................137 Introduction .........................................................................................................................................137 Modeling Techniques ..........................................................................................................................142 Case Study: Conceptual Modeling of Collaborative Manufacturing for Customized Products .........150 Summary .............................................................................................................................................156 References ...........................................................................................................................................156 Chapter 7 Sensor Integration and Data Fusion Theory .......................................................................................160 Introduction .........................................................................................................................................160 Data Fusion ........................................................................................................................................167 The Methods of Data Fusion ...............................................................................................................172 Applications of Multi-Sensor Information Fusion ..............................................................................174 Case Study ...........................................................................................................................................181 Summary .............................................................................................................................................186 References ...........................................................................................................................................186 Chapter 8 Group Technology ...............................................................................................................................189 Introduction .........................................................................................................................................189 Part Family Formation: Coding and Classification Systems .............................................................192 Group Technology in Intelligent Manufacturing ................................................................................209 Summary .............................................................................................................................................211 References ...........................................................................................................................................211 Chapter 9 Intelligent Control Theory and Technologies .....................................................................................214 Introduction .........................................................................................................................................214 Foundations of Intelligent Control .....................................................................................................215 Models for Intelligent Controllers ......................................................................................................219 Intelligent Control Technologies .........................................................................................................221 Intelligent Control Systems .................................................................................................................226 Challenges of Intelligent Control Technologies ..................................................................................236 Neural Network Based Robotic Control: A Case Study ......................................................................237 Summary .............................................................................................................................................242 References ...........................................................................................................................................242 Chapter 10 Intelligent Product Design: Intelligent CAD ......................................................................................245 Introduction .........................................................................................................................................245 Research and Application of ICAD .....................................................................................................251 Technique and Research Methods of ICAD ........................................................................................256 Case Study ...........................................................................................................................................264 Summary .............................................................................................................................................270 References ...........................................................................................................................................271 Chapter 11 Intelligent Process Planning: Intelligent CAPP ..................................................................................273 Introduction .........................................................................................................................................273 Application of GA to Computer-Aided Process Planning ...................................................................277 The Implementation of ANN in CAPP System ...................................................................................281 The Use of Case-Based Reasoning in CAPP ......................................................................................286 Multi-Agent-Based CAPP ...................................................................................................................289 Case Study ...........................................................................................................................................296 Summary .............................................................................................................................................299 References ...........................................................................................................................................299 Chapter 12 Intelligent Diagnosis and Maintenance ...............................................................................................301 Introduction .........................................................................................................................................301 Diagnosis Techniques .........................................................................................................................304 Remote Intelligent Diagnosis and Maintenance System .....................................................................312 Multi-Agent-Based Intelligent Diagnosis System ...............................................................................316 Case Study ...........................................................................................................................................319 Future of Intelligent Diagnosis ...........................................................................................................324 Summary .............................................................................................................................................325 References ...........................................................................................................................................327 Chapter 13 Intelligent Management Information System .....................................................................................229 Introduction .........................................................................................................................................229 IMIS Methodologies ............................................................................................................................330 Case Study I: Multi-Agent IDSS Based on Blackboard ......................................................................337 Case Study II: Intelligent Reconfigurable ERP System ......................................................................339 Summary .............................................................................................................................................355 References ...........................................................................................................................................355 Chapter 14 Trend and Prospect of Manufacturing Intelligence .............................................................................357 Introduction .........................................................................................................................................357 Driving Forces and Challenges of the Manufacturing Industry .........................................................359 Reviews on Forementioned MI Technologies......................................................................................367 MI vs Conventional Technologies in manufacturing ..........................................................................371 Prospect of Manufacturing Intelligence .............................................................................................377 Summary .............................................................................................................................................383 References ...........................................................................................................................................384 About the Authors .............................................................................................................................388 Index ...................................................................................................................................................390 vii Foreword Manufacturing engineering has come a long way, from the “black art” in the 1800s to the first scientific analysis of machining operations by F.W. Taylor in early 1900s (On the Art of Cutting Metals, 1906). In the early 1950s, computers were developed to take control of machine tools and NC machines were born, and later, CNC machines. The 60s and 70s saw a rapid proliferation of software and hardware development in support of manufacturing operations in the form of design, analysis, planning, process- ing, measurement, dispatch and distribution. The late M Eugene Merchant, then Director of Research Planning of Cincinnati Milacron Inc., made an exciting Delphi-type technological forecast of the future of production engineering at the General Assembly of CIRP in Warsaw, 1971. Five years later, he made another report on the “Future Trends in Manufacturing – Towards the Year 2000” in the 1976 CIRP GA in Paris. He reported that between then (1976) and the year 2000, the overall future trend in manufac- turing will be towards the implementation of the computer-integrated automatic factories. More than 30 years had since whisked past, manufacturing technologies had indeed progressed even more rapidly than Dr Merchant’s prediction then. Manufacturing operations have changed from programmed operations to programmable operations. In the last two decades, many manufacturing operations and processes have become near autonomous, i.e. they possess sufficient intelligence to diagnose, optimize, decide and correct any actions with mini- mum human interaction. Some systems can acquire and learn from past cases and become increasingly more “learned” through usage. Machine tools which are Internet-enabled can be continuously monitored by their manufacturers and their “state-of-heath” is exactly known and predictable to enable the reduc- tion of breakdown time and to ensure timely maintenance. Computer-integrated Manufacturing (CIM) has evolved to become Computer-Human Integrated Manufacturing (CHIM). Seamless integration of human and computer intelligence is another measure to capture the perfect complementation between man and machine. It is with great pleasure to witness this new book ‘Manufacturing Intelligence for Industrial Engineer- ing: Methods for System Self-Organization, Learning and Adaption’ by Zude Zhou, Qinghuai Wang and Ping Lou. It is a timely capture of the state-of-the-art development of intelligent manufacturing processes, covering a vast amount of materials from design, planning, diagnosis, information control, agents, and many enabling platforms and supporting theories. I have, beyond doubt, that this contribution will be invaluable to researchers as well graduate students in the field of manufacturing engineering. I sincerely congratulate the authors on having produced this splendid new book A. Y. C. Nee, DEng, PhD National University of Singapore Regional Editor IJAMT Regional Editor IJMTM viii A. Y. C. Nee received his PhD from the Victoria University of Manchester in 1973 and Doctor of Engineering (DEng) degree from UMIST in 2002. He joined then University of Singapore as a faculty member in 1974. He has held various administrative positions including Head of Department of Mechanical Engineering from 1993 to 1996, Dean of Faculty of Engineering from 1995 to 1998, other appointments include: Director of Office of Quality Management, Dean of Admissions, CEO of Design Technology Institute, Co-Director Singapore-MIT Alliance, Deputy Executive Director, then NSTB SERC, Director of Office of Research. Prof Nee received his National Day Award in Public Administration—PPA(P) in 2007. Professor Nee is well known in the field of manufacturing engineering. His research focuses on computer-aided design of fixtures, molds and dies, distrib- uted manufacturing systems, AI and augmented reality applications in manufacturing. He was selected a Fellow of the Society of Manufacturing Engineers with citation in 1990, and a Fellow of the International Academy for Production Engineering (CIRP) in the same year. He was elected as Vice-President (Elect) at the CIRP recent senate meeting in August 2009, and will be Vice President in August 2010 and President of CIRP from August 2011. He has published over 250 papers in international refereed journals, 5 authored and 5 edited books. Professor Nee is regional editor of International Journal of Machine Tools and Manufacture, and International Journal of Advanced Manufacturing Technology. In addition, he is editorial board member and associate editor of another 20 refereed journals. He is also Chairman of an NUS spin-off company—Manusoft Technolo- gies Pte Ltd established in 1997. ix Preface The environment of the manufacturing industry has changed impressively during this half century. New theories and technologies in the field of computers, networks, distributed computation, and artificial intelligence are extensively used in the manufacturing area. Integration and intelligence have become the developing trends of future manufacturing systems. These inform the concept of manufacturing change from the narrow sense of fabrication technique to the broad sense of extensive manufacture, that is, from the transformation of raw materials into finished goods, to the whole process of the prod- uct life cycle involving product design, fabrication, planning, managing, and distribution. Intelligent manufacturing will become one the most promising manufacturing technologies in the next generation of manufacturing industries. Manufacturing Intelligence (MI), as a new discipline of manufacturing engineering, focuses on sci- entific foundations and key technologies for developing, describing, integrating, sharing, and processing intelligent activities in the process of manufacturing. It mainly covers intelligent-control theory and technology for manufacturing equipment, intelligent management and decision making for the manu- facturing process, intelligent processing of manufacturing information, representation and reasoning of manufacturing knowledge, as well as intelligent surveillance and diagnosis for manufacturing equipment and systems. Clearly, MI is different from Artificial Intelligence (AI). AI is one aspect of theoretical research led by the requirements of mimicking human intelligence. It mainly focuses on exploring the mechanism of the process of human intelligent activities and emphasizes general theories, which highlight explorations of theory, as well as having serious logicality and reasoning. By contrast, MI mainly studies the mimicry of human intelligence to solve issues with intelligent computers (including software and hardware), and is a type of foundational research led by the requirements of applications in the manufacturing field. Although these two disciplines are different, they are related each other. AI is one of the main founda- tions of MI and the development of MI and the solution to the issues unsolved by AI will accelerate the development of AI. This book consists of four parts with fourteen chapters which include engineering background, founda- tions, technologies, applications, implementations, case studies, trends of intelligent manufacturing, and prospects for manufacturing intelligence. Part I contains one chapters, viz. chapter 1, which introduces manufacturing intelligence, the development of intelligent manufacturing, and the features of intelligent activities in the process of manufacturing. Part II and Part III including twelve chapters constitute the main part of this book. In these two parts, scientific foundations, key technologies and pragmatic appli- cations of manufacturing intelligence are analyzed. Among them, chapters 2 to 8 composing the Part II offer an extensive presentation of the engineering scientific foundations in manufacturing intelligence. Chapter 2 describes knowledge-based systems which mainly details general approaches for knowledge representation, acquirement, and general techniques for searching and reasoning. Chapter 3 presents

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.