Magnetically levitated planar actuator with moving magnets : electromechanical analysis and design Citation for published version (APA): Jansen, J. W. (2007). Magnetically levitated planar actuator with moving magnets : electromechanical analysis and design. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR630846 DOI: 10.6100/IR630846 Document status and date: Published: 01/01/2007 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 07. Feb. 2023 Magnetically levitated planar actuator with moving magnets: Electromechanical analysis and design PROEFSCHRIFT terverkrijgingvandegraadvandoctoraande TechnischeUniversiteitEindhoven,opgezagvande RectorMagnificus,prof.dr.ir. C.J.vanDuijn,vooreen commissieaangewezendoorhetCollegevoor Promotiesinhetopenbaarteverdedigen opwoensdag28november2007om16.00uur door JacobWillemJansen geborenteWijchen Ditproefschriftisgoedgekeurddoordepromotoren: prof.dr.ir. A.J.A.Vandenput en prof.dr.ir. P.P.J.vandenBosch Copromotor: dr. E.A.LomonovaMSc This work is part of the IOP-EMVT program (Innovatiegerichte onderzoekspro- gramma’s - Elektromagnetische vermogenstechniek). This program is funded by SenterNovem,anagencyoftheDutchMinistryofEconomicAffairs. Copyright c2007byJ.W.Jansen (cid:13) CoverdesignbyAtelJvanLieropBladelandStudioInterpointNetersel CIP-DATALIBRARYTECHNISCHEUNIVERSITEITEINDHOVEN Jansen,JacobW. Magnetically levitated planar actuator with moving magnets : electromechanical analysisanddesign/byJacobWillemJansen. -Eindhoven: Technische UniversiteitEindhoven,2007. Proefschrift. -ISBN978-90-386-1150-1 NUR959 Trefw.: magnetische levitatie / lineaire elektromotoren / elektrische machines ; permanentemagneten/elektrischemachines;magnetischevelden. Subjectheadings: magneticlevitation/linearmotors/permanentmagnetmotors /electromagneticactuators. Abstract Magnetically levitated planar actuator with moving magnets: Electromechanical analysis and design Magnetically levitated planar actuators are developed as alternatives to xy-drives, whichareconstructedofstackedlinearmotorsinhigh-precisionindustrialapplica- tions. The translator of these planar actuators is suspended above the stator with no support other than magnetic fields. Because of the active magnetic bearing the translator can move in six degrees-of-freedom. This thesis presents the electro- mechanical analysis and design of a contactless, magnetically levitated, planar ac- tuatorwithmovingmagnets. Thisplanaractuatorconsistsofastationarycoilarray with concentrated non-overlapping windings and a translator with a permanent- magnet array with a quasi-Halbach magnetization. As only the coils below the magnet array can produce significant force and torque, the set of active coils is switched during the movements of the translator in the xy-plane. As a result, the strokeinthexy-planecanbemade,intheory,infinitelylong. Theironlessplanaractuatorhasathree-dimensional,non-periodicalandnon- symmetrical electromechanical structure, which require a multi-physical approach toanalyze. Topredicttheforceandtorqueinthistypeofstructures,threedifferent magnetostatic models have been developed. These models differ in accuracy and calculation time, and are applied for the analysis, design and control of the planar actuator. The models are based on different analytical solutions of the magnetic fluxdensitydistributionofthepermanentmagnetarrayandonbothanalyticaland numericalsolutionsoftheLorentzforceandtorqueintegrals. Due to the integration of propulsion in the xy-plane with an active magnetic bearing,standarddecouplingschemesforsynchronousmachinescannotbeapplied iii iv Abstract in the planar actuator to decouple and linearize the force and the torque. To com- mutate the planar actuator a method has been developed which inverts a fully an- alytical mapping of the force and torque exerted by the active coils as function of the position and orientation of the translator using a minimal energy constraint andsmoothweighingfunctiontoenableswitchingbetweendifferentcoilssets. The resultingcurrentwaveformsintheindividuallyexcitedcoilsarenon-sinusoidal. Thesynthesisanddesignprocessoftheplanaractuatorhasbeensplitintotwo steps. As thepowerdissipationisanimportantdesigncriterion, the dimensionsof the permanent magnets and coils have been optimized to maximize the efficiency oftheforceproduction. Designruleshavebeenestablishedforthemagnetandcoil dimensions. Subsequently,severalplanaractuatorconfigurationshavebeensynthe- sizedwiththeseoptimizedcoilandmagnetdimensions. Thepowerdissipationand the force and torque ripples of these actuators have beencompared. Furthermore, thecausesoftheforceandtorquerippleshavebeenidentified. Basedonthecomparison,aplanaractuatorwithrectangularcoilsarrangedin aherringbonepatternhasbeenselectedandthisactuatorhasbeenmanufactured. The actuator has 84 coils in total, of which 24 are simultaneously used for the propulsion and levitation of the translator. The three magneto-static models and the commutation algorithm have been verified and the planar actuator has been successfullytested. Contents 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Researchgoalandobjectives . . . . . . . . . . . . . . . . . . . . 4 1.3 Organizationofthethesis . . . . . . . . . . . . . . . . . . . . . . 6 2 Magneticallylevitatedplanaractuatortechnology 9 2.1 Principlesofmagneticlevitation . . . . . . . . . . . . . . . . . . 10 2.1.1 Electromagneticsuspension . . . . . . . . . . . . . . 10 2.1.2 Electrodynamicsuspension . . . . . . . . . . . . . . 12 2.2 Planaractuatorsconstructedofmulti-DOFactuatorsegments . . 13 2.2.1 Planarmagneticlevitator . . . . . . . . . . . . . . . 13 2.2.2 Electrodynamicplanarmotor . . . . . . . . . . . . . 15 2.3 Magneticallylevitatedplanarwithmultipleorthogonallayersof longcoils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Magneticallylevitatedplanarwithshortcoils . . . . . . . . . . . 17 2.4.1 Two-dimensionalelectricmotor . . . . . . . . . . . . 18 2.4.2 Invertedplanarmotor . . . . . . . . . . . . . . . . . 19 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Electromechanicalmodels 23 3.1 Maxwell’sequations . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Forceandtorqueproduction . . . . . . . . . . . . . . . . . . . . 26 3.3 Coordinatesystemdefinitions . . . . . . . . . . . . . . . . . . . 27 3.4 Magneticsurfacechargemodel . . . . . . . . . . . . . . . . . . . 29 3.4.1 Magneticfluxdensitydistribution . . . . . . . . . . 29 3.4.2 Forceandtorque . . . . . . . . . . . . . . . . . . . . 31 3.5 Harmonicmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 v vi Contents 3.5.1 Magneticfluxdensitydistribution . . . . . . . . . . 32 3.5.2 Forceandtorque . . . . . . . . . . . . . . . . . . . . 36 3.6 Analyticalmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.6.1 Magneticfluxdensitydistribution . . . . . . . . . . 39 3.6.2 Forceandtorque . . . . . . . . . . . . . . . . . . . . 40 3.7 Transientmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.8 Magnetic flux density distribution of a planar Halbach magnet array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.9 Calculationtime . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4 Decouplingandlinearizationoftheforceandthetorque 51 4.1 dq0-decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2 Directwrench-currentdecoupling . . . . . . . . . . . . . . . . . 58 4.3 Directwrench-currentdecouplingwithswitchingbetweencoil-sets 60 4.4 Conditionnumber . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5 Synthesisoftheplanaractuator 69 5.1 Specificationoftheplanaractuator . . . . . . . . . . . . . . . . 69 5.2 Optimizationofasinglecoilandthemagnetarray . . . . . . . . 71 5.3 Synthesisconsiderations . . . . . . . . . . . . . . . . . . . . . . 80 5.3.1 Controllability . . . . . . . . . . . . . . . . . . . . . 80 5.3.2 Switchingbetweendifferentcoilsets . . . . . . . . . 80 5.3.3 Arrangementofthecoils. . . . . . . . . . . . . . . . 81 5.3.4 End-effectsofthemagnetarray . . . . . . . . . . . . 82 5.4 Comparisonoffourplanaractuators . . . . . . . . . . . . . . . . 82 5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6 Designaspectsofthemoving-magnetplanaractuator 95 6.1 Finaldesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.2 Workingpointofthepermanentmagnets . . . . . . . . . . . . . 100 6.3 Eddy-currentdamping . . . . . . . . . . . . . . . . . . . . . . . 102 6.4 Thermaldesign . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.5 Poweramplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7 Experiments 117 7.1 Measurementsystem . . . . . . . . . . . . . . . . . . . . . . . . 117 Contents vii 7.2 Forceandtorqueexertedbyasinglecoil . . . . . . . . . . . . . 120 7.3 EMF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 7.4 Open-loopcommutatedplanaractuator . . . . . . . . . . . . . . 129 7.5 Controlledplanaractuator . . . . . . . . . . . . . . . . . . . . . 133 7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8 Conclusionsandrecommendations 141 8.1 Modelingoftheforceandtorque. . . . . . . . . . . . . . . . . . 141 8.2 Commutationalgorithm. . . . . . . . . . . . . . . . . . . . . . . 142 8.3 Designmethodology. . . . . . . . . . . . . . . . . . . . . . . . . 142 8.4 Realizationandtestoftheprototype . . . . . . . . . . . . . . . . 144 8.5 Outlooktowardsfuturedevelopments . . . . . . . . . . . . . . . 144 8.5.1 Multipletranslatorsaboveonestator . . . . . . . . . 144 8.5.2 Fullrotationaboutthez-axis . . . . . . . . . . . . . 144 8.5.3 Planaractuatorwithfunctiondependentcoilconfig- urations . . . . . . . . . . . . . . . . . . . . . . . . . 145 8.5.4 Energyanddatatransfer . . . . . . . . . . . . . . . 145 8.5.5 Long-strokeplanaractuatorwithnanometeraccuracy145 A Listofsymbols 147 B 3-DOFactuatorwithmoving-magnets 151 C Materialandequipmentproperties 155 Bibliography 159 Samenvatting 167 Dankwoord-acknowledgements 169 CurriculumVitae 171 viii Contents Chapter 1 Introduction Flying has fascinated mankind for ages. In amongst others the Arab mythology, flyingormagiccarpetscanbefound[7]. Thesecarpetsfloatabovethegroundand are used for traveling. The planar actuator described in this thesis has similarities with these legendary carpets. A plate with permanent magnets, the carpet, is levi- tatedaboveanarrayofcoils. Theplatehasan,inprinciple,unlimitedstrokeinthe horizontal plane. Instead of magic, magnetic fields are applied to levitate and to propelthecarpet. 1.1 Background Many industrial apparatus, e.g. semiconductor lithography scanners, pick-and- placemachinesandinspectionsystemsareequippedwithaccuratepositioningsys- tems. Usually, these multi-degree-of-freedom (DOF) positioning systems are con- structed of stacked long- and short-stroke single-degree-of-freedom linear and ro- tary drives, which are supported by roller or air bearings. An example of such a system is shown in Figure 1.1. This xy-positioning system consists of three lin- ear motors. Two linear motors are placed in parallel and move in the y-direction (indicated with y1 and y2 in Figure 1.1). The third motor (indicated with x in Figure 1.1) is mounted in between the y1- and y2-translators and can move in the x-direction. Because of its shape, this positioning system is called an H-drive. The H-drive is amongst others applied in pick-and-place machines for the assembly of printedcircuitboards. Toobtainahighservobandwidth,thesystemisstiffand,as a result, the moving mass is large compared to the load. Because of the demand 1
Description: