Magnetic Memory Technology IEEEPress 445HoesLane Piscataway,NJ08854 IEEEPressEditorialBoard EkramHossain,EditorinChief JónAtliBenediktsson DavidAlanGrier ElyaB.Joffe XiaoouLi PeterLian AndreasMolisch SaeidNahavandi JeffreyReed DiomidisSpinellis SarahSpurgeon AhmetMuratTekalp Magnetic Memory Technology Spin-Transfer-Torque MRAM and Beyond DennyD. Tang Tang Consultancy Chi-Feng Pai National Taiwan University Copyright©2021byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved. PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada. Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinany formorbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise, exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,without eitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentofthe appropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers, MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com.Requests tothePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley& Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronline athttp://www.wiley.com/go/permission. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbest effortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedor extendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontained hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhere appropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother damages. Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontact ourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnited Statesat(317)572-3993orfax(317)572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsin printmaynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visit ourwebsiteatwww.wiley.com. LibraryofCongressCataloging-in-PublicationData Names:Tang,DennyD.,author.|Pai,Chi-Feng,author.|JohnWiley& Sons,Inc.,publisher. Title:Magneticmemorytechnology:spin-transfer-torqueMRAMandbeyond/ DennyD.Tang,Chi-FengPai. Description:Hoboken:Wiley-IEEEPress,[2021]|Includesbibliographical referencesandindex. Identifiers:LCCN2020033767(print)|LCCN2020033768(ebook)|ISBN 9781119562238(cloth)|ISBN9781119562221(adobepdf)|ISBN 9781119562283(epub) Subjects:LCSH:Magneticmemory(Computers).|Spintronics.|Nonvolatile random-accessmemory. Classification:LCCTK7895.M3T3652021 (print)|LCCTK7895.M3 (ebook)| DDC621.39/763–dc23 LCrecordavailableathttps://lccn.loc.gov/2020033767 LCebookrecordavailableathttps://lccn.loc.gov/2020033768 CoverDesign:Wiley CoverImage:FractalimagecourtesyofDennyD.Tang,(insetimage)IEEE 10 9 8 7 6 5 4 3 2 1 v Contents Preface xi AuthorBiographies xiv ListofCitedTablesandFigures xvi 1 BasicElectromagnetism 1 1.1 Introduction 1 1.2 MagneticForce,Pole,Field,andDipole 1 1.3 MagneticDipoleMoment,Torque,andEnergy 3 1.4 MagneticFluxandMagneticInduction 5 1.5 Ampère’sCircuitalLaw,Biot-SavartLaw,andMagneticFieldfrom MagneticMaterial 6 1.5.1 Ampère’sCircuitalLaw 6 1.5.2 Biot-Savart’sLaw 8 1.5.3 MagneticFieldfromMagneticMaterial 10 1.6 Equations,cgs-SIUnitConversionTables 11 Homework 13 References 17 2 MagnetismandMagneticMaterials 19 2.1 Introduction 19 2.2 OriginofMagnetization 19 2.2.1 FromAmpèretoEinstein 19 2.2.2 Precession 21 2.2.3 ElectronSpin 22 2.2.4 Spin-OrbitInteraction 24 2.2.5 Hund’sRules 25 2.3 ClassificationofMagnetisms 28 2.3.1 Diamagnetism 30 2.3.2 Paramagnetism 30 vi Contents 2.3.3 Ferromagnetism 34 2.3.4 Antiferromagnetism 37 2.3.5 Ferrimagnetism 40 2.4 ExchangeInteractions 42 2.4.1 DirectExchange 43 2.4.2 IndirectExchange:Superexchange 45 2.4.3 IndirectExchange:RKKYInteraction 46 2.4.4 Dzyaloshinskii-MoriyaInteraction(DMI) 48 2.5 MagnetizationinMagneticMetalsandOxides 49 2.5.1 Slater-PaulingCurve 49 2.5.2 RigidBandModel 50 2.5.3 IronOxidesandIronGarnets 51 2.6 PhenomenologyofMagneticAnisotropy 51 2.6.1 UniaxialAnisotropy 52 2.6.2 CubicAnisotropy 53 2.7 OriginsofMagneticAnisotropy 54 2.7.1 ShapeAnisotropy 55 2.7.2 MagnetocrystallineAnisotropy(MCA) 56 2.7.3 PerpendicularMagneticAnisotropy(PMA) 57 2.8 MagneticDomainandDomainWalls 57 2.8.1 DomainWall 58 2.8.2 SingleDomainandSuperparamagnetism 59 Homework 60 References 64 3 MagneticThinFilms 67 3.1 Introduction 67 3.2 MagneticThinFilmGrowth 67 3.2.1 SputterDeposition 68 3.2.2 MolecularBeamEpitaxy(MBE) 71 3.3 MagneticThinFilmCharacterization 72 3.3.1 Vibrating-SampleMagnetometer(VSM) 73 3.3.2 Magneto-OpticalKerrEffect(MOKE) 74 References 76 4 MagnetoresistanceEffects 77 4.1 Introduction 77 4.2 AnisotropicMagnetoresistance(AMR) 78 4.3 GiantMagnetoresistance(GMR) 79 4.4 TunnelingMagnetoresistance(TMR) 81 Contents vii 4.5 ContemporaryMTJDesignsandCharacterization 84 4.5.1 PerpendicularMTJ(p-MTJ) 85 4.5.2 FullyFunctionalp-MTJ 85 4.5.3 CIPTApproachforTMRCharacterization 87 Homework 89 References 89 5 MagnetizationSwitchingandFieldMRAMs 93 5.1 Introduction 93 5.2 MagnetizationReversibleRotationandIrreversibleSwitchingUnder ExternalField 93 5.2.1 MagnetizationRotationUnderanExternalFieldintheHardAxis Direction 94 5.2.2 MagnetizationRotationandSwitchingUnderanexternalField intheEasyAxisDirection 95 5.2.3 MagnetizationRotationandSwitchingUnderTwoOrthogonal ExternalFields 96 5.2.4 MagnetizationBehaviorofaSyntheticAnti-ferromagneticFilm Stack 97 5.3 FieldMRAMs 99 5.3.1 MTJofFieldMRAM 100 5.3.2 Half-SelectBitDisturbanceIssue 101 Homework 102 References 103 6 SpinCurrentandSpinDynamics 105 6.1 IntroductiontoHallEffects 105 6.1.1 OrdinaryHallEffect 105 6.1.2 AnomalousHallEffectandSpinHallEffect 106 6.2 SpinCurrent 109 6.2.1 ElectronSpinPolarizationinNM/FM/NMFilmStack 109 6.2.2 SpinCurrentInjection,Diffusion,andInverseSpinHallEffect 111 6.2.3 GeneralizedCarrierandSpinCurrentDrift-DiffusionEquation 114 6.3 SpinDynamics 116 6.3.1 Landau-LifshitzandLandau-Lifshitz-GilbertEquationsof Motion 116 6.3.2 FerromagneticResonance 118 6.3.3 SpinPumpingandEffectiveDampinginFM/NMFilmStack 120 6.3.4 FM/NM/FMCouplingThroughSpinCurrent 122 6.4 InteractionBetweenPolarizedConductionElectronsandLocal Magnetization 124 viii Contents 6.4.1 ElectronSpinTorqueTransfertoLocalMagneticMagnetization 124 6.4.2 MacrospinModel 125 6.4.3 Spin-TorqueTransferinaSpinValve 127 6.4.3.1 SwitchingThresholdCurrentDensity 128 6.4.3.2 SwitchingTime 129 6.4.4 Spin-TorqueTransferSwitchinginMagneticTunnelJunction 131 6.4.5 Spin-TorqueFerromagneticResonanceandTorkance 133 6.5 SpinCurrentInteractionwithDomainWall 134 6.5.1 DomainWallMotionunderSpinCurrent 135 6.5.2 ThresholdCurrentDensity 137 Homework 138 References 144 7 Spin-Torque-Transfer(STT)MRAMEngineering 151 7.1 Introduction 151 7.2 ThermalStabilityEnergyandSwitchingEnergy 152 7.3 STTSwitchingProperties 154 7.3.1 SwitchingProbabilityandWriteErrorRate(WER) 156 7.3.2 SwitchingCurrentinPrecessionalRegime 160 7.3.3 SwitchingDelayofanSTT-MRAMCell 161 7.3.4 ReadDisturbRate 161 7.3.5 SwitchingUnderaMagneticField–PhaseDiagram 162 7.3.6 MTJSwitchingAbnormality 164 7.3.6.1 MagneticBack-Hopping 164 7.3.6.2 BifurcationSwitching(BallooninginWER) 165 7.3.6.3 DomainMediatedMagnetizationReversal 166 7.4 TheIntegrityofMTJTunnelBarrier 166 7.4.1 MgODegradationModel 167 7.5 DataRetention 169 7.5.1 RetentionDeterminationBasedonBitSwitchingProbability 169 7.5.2 EnergyBarrierDeterminationBasedonAidingField 170 7.5.3 EnergyBarrierExtractionwithRetentionBakeatChipLevel 171 7.5.4 DataRetentionFailattheChipLevel 173 7.6 TheCellDesignConsiderationsandScaling 173 7.6.1 STT-MRAMBitCellandArray 174 7.6.2 CMOSOptions 174 7.6.3 CellSwitchingEfficiency 176 7.6.4 CellDesignConsiderations 177 7.6.4.1 WRITECurrentandCellSize 178 7.6.4.2 READAccessPerformanceandRAProductofMTJ 178 Contents ix 7.6.4.3 READandWRITEVoltageMargins 178 7.6.4.4 StrayFieldControlforPerpendicularMTJ 179 7.6.4.5 SuppressStochasticSwitchingTimeVariationIdeas 181 7.6.5 TheScalingofMTJforMemory 182 7.6.5.1 In-PlaneMTJ 183 7.6.5.2 Out-of-Plane(Perpendicular)MTJ 184 7.7 MTJSPICEModels 188 7.7.1 BasicMTJEquivalentCircuitModelforCircuitDesignSimulation 188 7.7.2 MTJSPICECircuitModelwithEmbeddedMacrospinCalculator 189 7.8 TestChip,Test,andChip-LevelWeakBitScreening 191 7.8.1 ReadMarginalBits 192 7.8.2 WriteMarginalBits 193 7.8.3 ShortRetentionBits 193 7.8.4 LowEnduranceBits 194 Homework 195 References 197 8 AdvancedSwitchingMRAMModes 205 8.1 Introduction 205 8.2 Current-Induced-Domain-WallMotion(CIDM)Memory 206 8.2.1 Single-BitCell 207 8.2.2 MultibitCell:Racetrack 209 8.3 Spin-OrbitTorque(SOT)Memory 211 8.3.1 SpinOrbitTorque(SOT)MRAMCells 211 8.3.1.1 In-PlaneSOTCell 212 8.3.1.2 PerpendicularSOTCell 218 8.3.2 MaterialsChoiceforSOT-MRAMCell 219 8.3.2.1 TransitionMetalsandtheirAlloys 219 8.3.2.2 EmergentMaterialsSystems 221 8.3.2.3 BenchmarkingofSOTSwitchingEfficiency 222 8.4 Magneto-ElectricEffectandVoltage-ControlMagneticAnisotropy (VCMA)MRAM 224 8.4.1 Magneto-ElectricEffects 224 8.4.2 VCMA-AssistedMRAMs 227 8.4.2.1 VCMA-AssistedField-MRAM 227 8.4.2.2 VCMA-AssistedMulti-bit-WordSOT-MRAM 229 8.4.2.3 VCMA-AssistedPrecession-ToggleMRAM 229 8.5 RelativeMeritofAdvancedSwitchingModeMRAMs 231 Homework 233 References 233 x Contents 9 MRAMApplicationsandProduction 241 9.1 Introduction 241 9.2 IntrinsicCharacteristicsandProductAttributesofEmergingNonvolatile Memories 242 9.2.1 IntrinsicProperties 243 9.2.2 ProductAttributes 244 9.3 MemoryLandscapeandMRAMOpportunity 247 9.3.1 MRAMasEmbeddedMemoryinLogicChips 248 9.3.1.1 IntegrationIssuesofEmbeddedMRAM 248 9.3.1.2 MRAMasEmbeddedFlashinMicrocontroller 249 9.3.1.3 EmbeddedMRAMCellSize 250 9.3.1.4 MRAMasCacheMemoryinProcessor 250 9.3.1.5 ImprovementofAccessLatency 251 9.3.2 High-DensityDiscreteMRAM 254 9.3.2.1 TechnologyStatus 254 9.3.2.2 IdealCMOSTechnologyforHigh-DensityMRAM 256 9.3.2.3 ImprovementtoEnduranceandWriteErrorRatewithErrorBufferin ChipArchitecture 258 9.3.3 ApplicationsandMarketOpportunityofMRAM 258 9.3.3.1 Battery-BackedDRAMApplications 260 9.3.3.2 InternetofThings(IoT)andCybersecurityApplications 261 9.3.3.3 ApplicationstoIn-MemoryComputing,andArtificial Intelligence(AI) 264 9.3.3.4 MRAM-BasedMemory-DrivenComputer 265 9.4 MRAMProduction 266 9.4.1 MRAMProductionEcosystem 266 9.4.2 MRAMProductHistory 267 9.4.2.1 First-GenerationMRAM–FieldMRAM(AlsoCalledToggle MRAM) 268 9.4.2.2 TheSecond-GenerationMRAM–STT-MRAM 269 9.4.2.3 ThePotentialThird-GenerationMRAM–SOTMRAM 270 Homework 271 References 271 AppendixA RetentionBake(IncludingTwo-WayFlip) 277 AppendixB MemoryFunctionality-BasedScaling 279 AppendixC High-BandwidthDesignConsiderationsfor STT-MRAM 299 Index 323