ebook img

Magnetic Doppler imaging considering atmospheric structure modifications due to local abundances: a luxury or a necessity? PDF

2.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Magnetic Doppler imaging considering atmospheric structure modifications due to local abundances: a luxury or a necessity?

Mon.Not.R.Astron.Soc.000,000–000(2011) Printed11January2012 (MNLATEXstylefilev2.2) Magnetic Doppler imaging considering atmospheric structure modifications due to local abundances: a luxury or a necessity? 1 2 3 2 O. Kochukhov , G. A. Wade and D. Shulyak 1 1DepartmentofPhysicsandAstronomy,UppsalaUniversityBox516,75120Uppsala,Sweden 0 2DepartmentofPhysics,RoyalMilitaryCollegeofCanada,Box17000,StnForces,Kingston,OntarioK7K7B4,Canada 2 3InstituteofAstrophysics,Georg-AugustUniversity,Friedrich-Hund-Platz1,D-37077Go¨ttingen,Germany n a J Accepted2012January9.Received2012January9;inoriginalform2011December6 9 ] ABSTRACT R Magnetic Doppler imaging is currently the most powerful method of interpreting high- S resolution spectropolarimetric observations of stars. This technique has provided the very h. first maps of stellar magnetic field topologies reconstructed from timeseries of full Stokes p vector spectra, revealing the presence of small-scale magnetic fields on the surfaces of Ap - stars.ThesestudieswererecentlycriticisiedbyStiftetal.,whoclaimedthatmagneticinver- o sionsarenotrobustandareseriouslyunderminedbyneglectingafeedbackontheStokesline r t profilesfromthelocalatmosphericstructureintheregionsofenhancedmetalabundance.We s showthatStiftetal.misinterpretedpublishedmagneticDopplerimagingresultsandconsis- a [ tently neglectedsome of the most fundamentalprinciplesbehind magnetic mapping.Using state-of-the-artopacitysamplingmodelatmosphereandpolarisedradiativetransfercodes,we 1 demonstratethatthevariationofatmosphericstructureacrossthesurfaceofastarwithchemi- v calspotsaffectsthelocalcontinuumintensitybutisnegligibleforthenormalisedlocalStokes 2 profilesexceptfortheraresituationofaverystronglineinanextremelyFe-richatmosphere. 0 Forthedisk-integratedspectraofanApstarwithextremeabundancevariations,wefindthat 9 1 theassumptionofameanmodelatmosphereleadstomoderateerrorsinStokesI butisneg- . ligible for the circular and linear polarisationspectra. Employinga new magnetic inversion 1 code,whichincorporatesthehorizontalvariationofatmosphericstructureinducedbychem- 0 icalspots,wereconstructednewmapsofmagneticfieldandFeabundanceforthebrightAp 2 star α2CVn. The resulting distribution of chemical spots changes insignificantly compared 1 : tothepreviousmodellingbasedonasinglemodelatmosphere,whilethemagneticfieldge- v ometrydoes notchange at all. This shows that the assertions by Stift et al. are exaggerated i X as a consequenceof unreasonableassumptions and extrapolations,as well as methodologi- calflawsandinconsistenciesoftheiranalysis.Ourdiscussionprovesthatpublishedmagnetic r a inversions based on a mean stellar atmosphere are highly robust and reliable, and that the presenceofsmall-scalemagneticfieldstructuresonthesurfacesofApstarsisindeedreal.In- corporatinghorizontalvariationsofatmosphericstructureinDopplerimagingcanmarginally improvereconstructionofabundancedistributionsforstarsshowingverylargeironoverabun- dances.Butthiscostlytechniqueisunnecessaryformagneticmappingwith high-resolution polarisationspectra. Keywords: stars:chemicallypeculiar–stars: atmospheres– stars:magneticfields–stars: spots–stars:individual:α2CVn 1 INTRODUCTION tantnewinsightsintotheprocessesoccurringinstellarouterlayers and unique constraints on theoretical models (Donatietal. 2003, 2006a,b; Petitetal. 2008; Morinetal. 2008; Kochukhovetal. Doppler Imaging (DI) of stellar surfaces represents one of the 2007;Kochukhov&Wade2010). spectacularsuccessesofmodernobservationalstellarastrophysics. Since the first applications of these tomographic modeling tech- Conventional DI interprets rotational modulation of the in- niques to cool and hot stars in the 1970s and early 1980s tensity spectra of stars to reconstruct two dimensional maps of (Khokhlova&Ryabchikova 1975; Goncharskiietal. 1977, 1982; photospheric temperature or abundance spots (inthecase of cool Vogt&Penrod 1983), they have revealed the complex surface andhotstars,respectively).Basically,thestellarsurfaceisdivided structuresof rotatingstarsinremarkable detail, providing impor- into a grid of pixels, each of which is assigned independent lo- 2 O. Kochukhov,G. A. WadeandD. Shulyak calphysicalproperties(temperatureorabundance).Syntheticdisc- ing that DI maps based on single, mean stellar atmospheres are integratedspectraarecomputed,takingintoaccountthelocaltem- highlyrobustandreliable.Ourpaperisorganisedasfollows.First, perature/abundanceofeachpixel,aswellasitsrotationalDoppler inSection2webringtothereader’sattentionseveralkeyaspects shift,andcompared toatimeseriesof observed spectrallinepro- ofDIandMDImethodologyoverlookedormisinterpretedbyS12. files.Iterativeadjustmentofthelocalphysicalconditionsleadstoa Calculationofrealisticopacitysamplingmodelatmospheres,cor- model(or“map”)thatiscapableofreproducingtheobservedline respondinglocalcontinuumintensities,andtheStokesIQUV pro- profileshapesandmodulationindetail. filesisdescribedinSection3.UsingtheFeabundancedistribution As the available observational data and computational re- andmagneticfieldtopologyreconstructed forα2CVnbyKW10, sources have improved, DI models have become increasingly so- wecomputeinSection4.2thefullStokesprofilesofastrongFeII phisticated, with better resolution and realism (e.g. inclusion of line, exploring the consequences of the lateral variation of atmo- various physical effects such as differential rotation). A qual- sphericstructureontheintensityandpolarisationprofiles.Acom- itative step forward was taken with the inclusion of magnetic plete MDI inversion based on a grid of model atmospheres with fieldsbyPiskunov&Khokhlova(1983)forApstarsandbySemel different elemental abundances is presented for α2CVn in Sec- (1989) for cool active stars. Zeeman or Magnetic Doppler Imag- tion4.3.Wesummariseanddiscussresultsofourinvestigationin ing (ZDI or MDI; Brownetal. 1991; Piskunov&Kochukhov Section5. 2002; Kochukhov&Piskunov 2002) extends the basic princi- ples of DI to allow mapping of stellar magnetic fields by inter- preting timeseries of line profile Zeeman polarisation. Currently, themostsophisticatedMDIcodes(Piskunov&Kochukhov 2002; 2 GENERALCONSIDERATIONS Kochukhov&Piskunov 2002) are capable of simultaneous and 2.1 Robustnessandstabilityofmagneticinversions self-consistentmappingofsurfaceabundancesortemperaturedis- tributionsalongwiththevector magneticfieldfromtimeseriesof As with any complex data modelling technique, capabilities lineprofilesintwo(IV)orfour(IQUV)Stokesparameters. and intrinsic limitations of MDI must be tested comprehen- Recently, Stift,Leone&Cowley (2012) reported the results sively. The physical foundations and numerical methods im- of experiments that seriously question the basic reliability of the plemented in the INVERS10 code were described in detail by results of DI and MDI, particular as applied to chemically pecu- Piskunov&Kochukhov (2002, hereafter PK02). This paper pre- liar Ap stars. As pointed out by Stift et al., DI techniques have sented a general discussion of the full Stokes vector inversion revealed some surprising and exotic characteristics of the atmo- methodologyandcarriedoutacomprehensivetheoreticalandnu- spheresoftheseobjects.Oneofthemostoutstanding isthelarge merical assessment of its key algorithms, such as polarised ra- chemical abundance contrasts in atmospheres of Ap stars, which diative transfer and regularisation of the ill-posed stellar surface according to DI analyses can be quite extreme (e.g. variations of mappinginverseproblems.TheforwardStokesparameterprofiles several ordersof magnitudeacrossthestellarsurface). Inregions computed with INVERS10 were compared with the spectra pro- of high enrichment, some metals are sometimes inferred to be ducedbytwootherindependentmagneticspectrumsynthesiscodes only a factor of ∼30 less abundant compared to hydrogen (e.g., (Wadeetal. 2001). This study showed a very good agreement of Kuschnigetal. 1998), which is challenging to explain theoreti- thelocalanddisk-integratedStokesprofilesproducedbyallthree cally. The distributions of abundances can be extremely complex codes,providedtheyuseaconsistentdefinitionofStokesparame- (Kochukhovetal.2004b),whilesometimestheyarerathersimple tersandthesameinputmodelatmosphereandatomicdata. (e.g.,Lu¨ftingeretal.2010b).Thedistributionsmayshowstraight- A subsequent study by Kochukhov&Piskunov (2002, here- forward relationships with the inferred magnetic field geome- afterKP02)presentedextensivenumericalexperimentsdesignedto try(e.g.,Rice,Wehlau&Holmgren1997),butfrequentlytheydo evaluateperformanceofINVERS10.Thesetestsdemonstratedthat, not.Recently,MDImappingusingfourStokesparameterdatasets givenhigh-resolutionIQUV observations,themagneticinversion (Kochukhovetal.2004a;Kochukhov&Wade2010)hasrevealed code is capable of correctly reconstructing abundance and mag- the unexpected presence of intense, small-scale structures in the neticfieldvectorsurfacedistributionssimultaneouslyandwithout reconstructed magnetic field. The existence of these structures is anypriorassumptionsaboutthelarge-scalemagneticfieldgeome- unexplained,andaddsaqualitativelynewelementtoourgrowing try.Atthesametime,itwasfoundthatanaccuratemappingofa pictureofthemagneticstructureofApstars. globally-organisedmagneticfieldfromcircularpolarisationalone TheessentialclaimofStiftetal.(2012,hereafterS12)isthat requires an additional multipolar constraint on the possible mag- mapscomputedforApstarsusingDIandMDImethodsarefunda- neticfieldstructure.KP02showedthatthefullStokesvector-based mentallyunreliableandthatthevarietyofunexplained properties simultaneousmagneticandabundanceinversionsaregenerallysta- ofmapsdescribedaboveareartefactsofneglectingtheimpactof bleandrobust.Itwasfound thatthederived solutionsareunique largeabundancesandabundancecontrastsonthelocalstellaratmo- and themagnetic mapping code cannot arrive toaspurious solu- spheric structure(e.g., Khan&Shulyak 2007).In particular, Stift tionwhichwouldprovideagoodfittoobservations. Anotherim- etal.statethatignoringtheseeffectsresultsinartificiallineprofile portantoutcomeoftheMDItestscarriedoutbyKP02isthatmag- variability,whichtranslatesintospuriousabundanceandmagnetic neticinversionsextractinformationaboutmagneticfieldprimarily structuresinDImaps.Ultimately,theyconclude thatcomplexDI fromtherotationalmodulationofStokesprofilesratherthanfrom mapswithhigh-contrastabundancedistributionsareincorrect,and theDopplershifts,unlikefortheconventionalscalarDI,makingit that the presence of small-scale structure and high-contrast mag- possibletoapplyMDItoveryslowlyrotatingstars. neticspots,asinferredfromMDI,cannotatpresentbereliablyas- Thecomprehensive discussion oftheMDI methodology im- certained,andarelikelyanartefactoftheinversionprocedure. plementedinINVERS10andextensivenumericaltestsofthiscode In thispaper weconfront the assumptions and methodology presented by PK02 and KP02 are neglected by S12, who do not of S12, demonstrating that their conclusions are largely founded mentioneitherofthesetwopapers.Thisoversightmakesmuchof on fundamental errors and unrealistic assumptions, and conclud- thegeneralcriticismbyS12irrelevantbecausemanyoftheircon- MagneticDopplerimagingconsideringmetallicity-dependentatmosphericstructure 3 cernsabout magneticinversionmethodology havebeenexplicitly cal harmonic expansion, was independently developed by Donati addressedbyPK02andKP02. (2001) and successfully used for the Stokes IV ZDI of global We note that the contentions of S12 about what DI inver- fields of Ap stars (Lu¨ftingeretal. 2010a), fully convective low- sioncanorcannotdolackareferencetothebasicnumericaltests massstars(Donatietal.2006a;Morinetal.2008),solaranalogues demonstrating robustness of their ownabundance inversion code. (Petitetal.2008),andlate-typeAp-stardescendants(Aurie`reetal. Forinstance,comparingFig.7and8oftheirpaper,onecanseethat 2011). These developments were entirely neglected by S12, who theauthorshavefailedtorecoverthetruedistributionofabundance subscribedtotheobsoleteviewofBrownetal.(1991)thatglobal spotsevenwhentheyused aconstant magneticfieldandadopted magneticfieldscanbeonlymappedusingfullStokesdata. thesamemeanatmosphericstructureforcalculationsoftheinput Discussing the IQUV magnetic mapping of α2CVn by spectraandfortheinversion.Amajordiscrepancybetweenthein- KW10,S12insisted,citingFigs.6and8ofKW10,thatthesein- put and reconstructed abundance maps revealed in such a simple versionsareunstablebecause“resultsdependtoostronglyonthe testindicatesseriousproblemswiththeDIcodeusedbyS12.Ev- regularisationparameter”.Butthesefiguresshowexactlytheop- idently,resultsbasedontheapplicationofthisuntestedinversion posite,demonstratingtheimpactofchangingtheregularisationpa- codemustbeconsideredwithcaution. rameter (which controls the relative contributions of the penalty functionandchi-squareofthefit)byastaggeringfactorof10.This largeincreaseofregularisationwasrequiredtowipeoutthesmall- 2.2 RegularisationinmagneticDI scalefieldstructures. Nevertheless, contrary totheclaim byS12, Typically,agridofseveralhundredtoseveralthousandsurfaceel- thelarge-scalefieldtopology,characterisedbytheradialfieldcom- ements is employed in DI. Because even a high-quality spectro- ponent, was very similar for the maps obtained with the optimal scopicdatasetmayonlyrepresentafewhundredindependentcon- andartificiallylargeregularisation,sotheTikhonovregularisation straintsonthestellarsurfacestructure,theconventional tempera- operatedasexpected.KW10havemadeitclearthatthetwovalues tureorabundanceDopplerimagingproblemismathematicallyill- oftheregularisationparameterarebynomeansequivalentbecause posed (Goncharskiietal. 1977; Vogt,Penrod&Hatzes 1987). As applyingthehigherregularisationvalueyieldsafarworsefittothe aconsequence,alargefamilyofmaps–eachwiththesamelarge- observational data. S12 seem to have ignored these explanations scale structure, but differing in smaller-scale details – is able to and the context of KW10 inversions with different regularisation reproduce the observations. In fact, the surface grid is often suf- parameters,leadingtotheirmisinterpretationoftheMDIresults. ficientlyfineastobeabletofittheobservational noise. Tosolve theseproblemsapenalty(orregularisation)functionisincludedin 2.3 LineprofilemodellingandinterpretationofDImaps the optimisation procedure, serving to limit the information con- tent(maximumentropyregularisation)orhigh-frequencystructure The general goal of Doppler imaging – reconstructing a two- (Tikhonovregularisation)ofthemap.Ithasbeendemonstratedthat dimensional stellar surface map – is always achieved through a in conventional DI, for high resolution and signal-to-noise ratio modelling of the rotational modulation of spectral line profiles. data sets, these two approaches lead to maps that are essentially However, itisimportant todiscriminatebetween thetasksof ob- equivalent(Strassmeieretal.1991). tainingamapofacertainparametercharacterisingthestellarsur- The situation is different for magnetic DI. Piskunov (2005) face and interpreting this map in terms of a physical quantity. In showed that the underlying inverse problem based on full Stokes the early days of chemical spot mapping of Ap stars, DI stud- observations iswell-posed and thushas a unique solution, and is ies reconstructed local equivalent widths instead of real elemen- thereforenotinfluencedbytheselectionofaspecifictypeofreg- tal abundances (Goncharskiietal. 1983). The majority of current ularisation.Inthiscasetheroleofregularisationislimitedtosup- DI and ZDI studies of cool active stars map brightness instead pressingnumericalinstabilitiesinducedbyasparsewavelengthand of temperature, using a coarse temperature-independent analyti- phasesampling typicalof realobservational data.Incontrast,the cal description of the local line profiles (e.g., Donatietal. 2003; MDI problem based on only Stokes I and V is intrinsically ill- Marsdenetal. 2011). Modern abundance DI studies of Ap stars posed, leadingtodifferent resultsdepending ontheappliedregu- (e.g.,Kochukhovetal.2004b;Rice,Holmgren&Bohlender2004; larisationalgorithm.Forinstance, Brownetal.(1991)havefailed Lu¨ftingeretal.2010a)arenormallybasedonthetheoreticalspectra torecoveradipolarmagneticfielddistributionfromStokesIV data calculatedfordifferentchemicalcompositionusingthesamemean with their maximum entropy ZDI code but succeeded in recon- model atmosphere. The resulting maps are presented in the form structing topologically more complex field geometries consisting of horizontal distributions of chemical abundance. But it is im- ofisolatedspots. portanttorememberthateveninthiscase“elementalabundance” Thiscounterintuitive situationwhen mapping simpler global is essentially a parameter controlling the local line strength and, field topologies from Stokes IV spectra is seemingly more diffi- therefore, it is the former stellar surface property that is mapped cult than recovering very complex fields of late-type stars (e.g., byaninversioncode.Interpretationofthelinestrengthparameter Donatietal. 1999) has been addressed by KP02. They showed canbeviewedasaseparateanalysisstep,largelydecoupledfrom that the maximum entropy constraint is inappropriate for global themappingitself.Assumptionsabouttheatmosphericstructureof magnetic topologies since they do not correspond to a map with theregionscharacterisedbydifferentmetallicitymadeinthislat- a lower information content compared to a distribution of iso- tersteparenotnecessarilyunderminingreconstructionofthetwo- latedspotsonahomogeneous background. KP02achievedsome- dimensionalmapsandhavenopossibilityofchangingthetopology what better results with IV imaging of dipolar fields using the ofthemainstellarsurfacefeaturesaslongastheresultinglocalpro- Tikhonov regularisation and demonstrated that a fully satisfac- filescanmatchthoseproducedwithaphysicallycorrectandcom- tory reconstruction of the global field topologies is possible with pletemodelbyintroducinganoffsetofchemicalabundancefrom multipolarregularisation,whichpenalisesadeviationofthemag- itstruevalue. netic geometry from a low-order multipolar solution. A simi- Ifamagneticfieldisreconstructedsimultaneouslywithchem- lar magnetic inversion technique, employing a general spheri- icalmaps,thereisasimilardecouplingbetweenpolarisationprofile 4 O. Kochukhov,G. A. WadeandD. Shulyak modellingandinterpretationoftheStokesI linestrength.Evenif QandUprofilesobservedforthe0.3–0.6phaseinterval.Belowwe thelatterisinerrorbyasignificantamount,anydecentMDIcode showthatforStokesQUV thisdifferenceisactuallyconsiderably would compensate for this problem by arriving to a different lo- moreimportantthantheimpactofusingindividuallocalmodelat- calabundance,whichyieldsthelocalpolarisationprofilesclosely mospheres,asurgedbyS12. matching the true ones for the same magnetic field strength and S12 objected the very possibility of resolving small-scale orientation. One the other hand, an unaccounted variation of the surface features in relatively slowly-rotating stars like α2CVn continuumbrightnessmayleadtoasystematicover orunderesti- (vesini=18.5 kms−1) on the grounds that the difference in mationofthemagneticfieldstrengthinbright, respectivelydark, Doppler shifts between the leading and trailing edges of such surfaceregions. spots is small in comparison to the instrumental resolution. Ac- ThisrobustnessofDIwithrespecttoerrorsininterpretationof cording to them, the spatial resolution of the stellar DI images thelocallineprofilesanddecouplingbetweenmagneticandabun- is entirely determined by the relation of vesini and instrumen- dancemappingwasignoredinthediscussionbyS12.Throughout tal profile width. Any reader familiar with stellar surface map- theirpapertheseauthorsincorrectlyimplythatanydifferencebe- ping will immediately recognise an obvious flow in this reason- tween the local profiles corresponding to an approximate versus ing. S12consider thesurface resolution provided by asingle ob- afullyrealistictreatmentofthelineformationwillautomatically servation,whileDImakesuseofmanytime-resolvedspectra(20 translatetomajorsurfacestructureartefacts,invalidatingmagnetic in the case of KW10 study of α2CVn), extracting information mapping. This viewpoint is fundamentally flawed because it ne- not only from the Doppler shifts but also from rotational modu- glects to take into account the intrinsic ability of an MDI code lation. The latter is more important for magnetic mapping since tocompensate thelineintensityerrorsarising fromtheuse of an polarisationprofilescanexhibitahugerotationalvariabilityevenif approximaterelationbetweenthelocallinestrengthandchemical vesiniisnegligible.NumericalexperimentsbyKP02havedemon- composition. stratedthatthisallowsanapplicationofMDItoalltypesofearly- type magnetic stars, regardless of their projected rotational ve- locities. Indeed, magnetic DI maps have been obtained for many 2.4 Anevidenceforsmall-scalefieldsinApstars veryslowlyrotating(vesini.5kms−1)early-type(Donatietal. Traditionally, analyses of magnetic field topologies of early-type 2006b; Lu¨ftingeretal. 2010b) and late-type (Petitetal. 2008; starsreliedonfittinglow-ordermultipolarfieldmodelstothephase Morinetal.2008;Faresetal.2010)stars.Areadermayalsonote curvesofintegralobservables,suchasthemeanlongitudinalfield that with systematic application of the reasoning of S12, one is and themean fieldmodulus, inferredfromthelow- or moderate- bound toconclude that stellarsurface mapping iscompletely un- resolution Stokes I and V observations (Landstreet&Mathys feasible with photometric data – a ludicrous assertion given the 2000; Bagnuloetal. 2002). Extension of these studies to broad- well-known success of many photometric star spot investigations bandlinearpolarisationrevealedsignificantdeficienciesofthemul- (e.g.,Korhonen,Berdyugina&Tuominen2002;Lanzaetal.2009; tipolarmodellingapproach, hintingatthepresence ofmorecom- Mosseretal. 2009; Lu¨ftingeretal.2010a). Forinstance, thehigh plexmagnetictopologiesonthesurfacesofApstars(Leroyetal. photometricstabilityoftheCoRoTsatelliteallowedMosseretal. 1995; Leroy,Landolfi&Landidegl’Innocenti 1996). A direct (2009)todetectphotometricsignaturesofspotsassmallasafew comparison of the multipolar field geometry predictions with the degreesacross,whereasaccordingtoS12suchastudyshouldnot high-resolution MuSiCoS four Stokes parameter observations of haveprovidedanysurfacespatialresolutionatall. Ap stars (Wadeetal. 2000; Bagnuloetal. 2001) demonstrated a Summarising, the general arguments by S12 against the de- majorfailureofthesetopologicallysimplemodelsinreproducing tectabilityofthecomplexmagneticfieldsonApstarsaredemon- theshapesandamplitudesoftheobservedStokesQandUprofiles. strablyincorrectsincetheyneglectsomeoftheverybasicDIprin- Inversions based on these pioneering full Stokes vector ob- ciplesandignorealargebodyofcontraryevidenceintheliterature. servations showed that small-scale field structures superimposed ontheglobalbipolarbackground arerequiredtomatchthelinear polarisation inside spectral line profiles (Kochukhovetal. 2004a; KW10).TheKW10analysisofα2CVnprovidedthemostclear-cut 3 MODELATMOSPHERESANDLOCALPROFILES exampleofthissituation. TheMDIbasedontheStokesI andV 3.1 AtmosphericmodellingwiththeLLmodelscode subsetofthefourStokesparameterobservationsyieldedadipolar- likefieldgeometry. Ontheotherhand, extendingtheinversionto Anymeaningfulanalysisoftheeffectsofnon-solarchemicalcom- all four Stokes parameters revealed a pair of high-contrast mag- position on the atmospheric structure of Ap stars requires an ad- neticspots superimposed onthe dipolar-likebackground. Asdis- vancedopacitysamplingmodelatmospherecode,whichallowsto cussedabove, thisisdefinitelynotaregularisationartefact asthe carryoutaccuratecalculationsforarbitraryelementalabundances. differencebetweenthelinearpolarisationprofilescorrespondingto Inthisstudyweuseversion8.8ofthewell-establishedmodelatmo- the magnetic models withand without the small-scale features is spherecodeLLMODELS(Shulyaketal.2004).Thisprogramtreats highlysignificant. atomiclineopacitybyadirect,line-by-linespectrumsynthesisand TheclaimbyS12that“amere3outof20phasesareresponsi- isabletoaccountforindividualnon-solarchemicalabundancepat- ble”forthiscomplexityofα2CVnmagneticmapsisfalse.KW10 terns (Khan&Shulyak 2007) and inhomogeneous vertical distri- haveunambiguouslystatedinthetextoftheirpaperandclearlyil- butionofelements(Kochukhovetal.2009b;Shulyaketal.2009). lustratedwithFig.5thatthediscrepancybetweenthe“simple”and The code also includes a provision for treating the effects of a “complex”magneticfieldgeometriesislargeincomparisontothe strongmagneticfieldonthelineopacity,includingZeemansplit- observational noise over at least half of the stellar rotational cy- tingandpolarisedradiativetransfer(Kochukhov,Khan&Shulyak cle,correspondingtoapproximately10phases.Themodellacking 2005; Khan&Shulyak 2006), and a contribution of the Lorentz small magnetic spots yields asubstantially higher chi-square and forcetotheequationofhydrostaticbalance(Shulyaketal.2007). cannot evenqualitativelyreproduce thedouble-waveshapeofthe However,asdemonstratedbythepreviousstudies,forthemoderate MagneticDopplerimagingconsideringmetallicity-dependentatmosphericstructure 5 Figure1.DistributionandvisibilityoftheFeabundancevaluesinthesur- facemapderivedforα2CVnbyKW10.Upperpanel:Feabundanceforthe visiblepartofthestellarsurface(latitude660◦).Theverticaldashedline Figure2.Temperatureasafunctionofthecontinuumopticaldepthatλ= showstheweightedmeanabundance,logNFe/Ntot = −3.79,usedfor 5000 A˚ (upper panel) and Rosseland optical depth (lower panel) in the thereferencemodelatmosphere.Thedashedlinesindicatefouradditional modelatmospheresofα2CVncomputedfordifferentFeabundances. Fe abundances for which we also calculated model atmospheres. Lower panel:Visibilityfunction(seeSection3.1)illustratingrelativecontributions of the surface zones with different Fe abundances to the disk-integrated spectraofα2CVn. mostly located on the stellar hemisphere directed away from the observer. The lower panel of Fig. 1 quantifies this statement by plottingavisibilityfunctionofdifferentFeabundances,definedas 2–4kGmagneticfieldofα2CVn,Zeemansplittingandpolarised theprojectedareasofthecorrespondingsurfaceelementssummed radiativetransfercanbesafelyneglectedinthemodelatmosphere overall20rotationalphasesoftheα2CVnobservationsanalysed calculations. by KW10. If we normalise the area under thisvisibility function Using the final Fe abundance map derived for α2CVn by to1,therelativecontributionofzoneswithlogNFe/Ntot >−2is KW10,wedeterminedameansurface-integratedFeabundanceof only1.1×10−2.Thus,contrarytotheclaimsbyS12,regionsofex- logNFe/Ntot = −3.79usingaweightfunctionaccordingtothe tremeFeoverabundancecontributenegligiblytotheMDIanalysis Eq.(64)ofPK02.ThefullamplitudeoftheFeabundancevariation ofα2CVn. overthestellarsurfaceis4.9dex,butthelargestvaluesinthisrange Aimingtopresentabalancedanalysisoftheeffectsofmetal- arerepresentedbyasmallnumberofsurfaceelementsandmakein- licity on the model atmosphere and spectra of α2CVn, we con- significant contributiontothedisk-integrated Stokesprofilespec- sidered the Fe abundance range from logNFe/Ntot = −2.19 to tra. Figure1 shows a distributionof the Feabundance values for logNFe/Ntot = −5.91,encompassing 90%ofthevisiblestellar thevisiblepartofthestellarsurface,whichcorrespondstothelat- surface. We have covered this range with five model atmosphere ituderangefrom−90◦ to+60◦ fortheinclinationanglei=120◦ calculations, differing only by the adopted Fe abundance. For adoptedforα2CVn.MostofthediscussionbyS12isfocusedon simplicity,thesolarabundancesfromAsplund,Grevesse&Sauval modelatmospherescomputedforextremeFeoverabundances,such (2005)areassumedforallotherchemicalelements.Forallmodel aslogNFe/Ntot = −2.0,−1.75,and−1.5.However,thereader atmospherecalculationsreportedinthispaperweuseda72-layer can readily see from Fig. 1 that these high abundances are quite depth grid with an equidistant spacing in the logτ5000 range be- rare. In the actual Fe map published by KW10 only 2.5% of the tween −7 and +2. The frequency-dependent quantities were cal- visiblesurfacehaslogNFe/Ntot >−2. culatedbetween50 A˚ and100000A˚ withaconstant wavelength Infact,thezoneswithahighFeconcentration areevenless step of 0.1 A˚. The resulting sampling at ∼106 frequency points important for the disk-integrated Stokes spectra because they are yieldsmorepreciselineopacitiesthantheATLAS12calculationsat 6 O. Kochukhov,G. A. WadeandD. Shulyak 120000frequenciesemployedinthestudybyS12.LLMODELSit- scopicandphotometricobservables (suchasenergydistributions, erationswerecontinueduntilthetemperaturechangewaslessthan hydrogen lines, photometric parameters, metallic line spectra) in 1Katalldepths.Thisconditionalsosatisfiedthecriteriaoftheflux ordertoquantifytheimportanceofdetectedchangesinthecontext constancyandradiativeequilibriumto0.1–0.3%.S12admittedthat ofparticularinvestigations. their model calculations were plagued by convergence problems Let us note in passing that modification of the atmospheric for high Fe abundances. We encountered no such problems with structure due to enhanced metal abundances is closely connected LLMODELS. to a well-known effect of the redistribution of stellar flux from Ourcomputationofthelineabsorptioncoefficientwasbased UV to longer wavelength regions (Leckrone 1973), making the ontheatomicdatafor∼6.6×107linesextractedfromtheVALD Fe spot region darker in the UV and brighter in the optical data base (Kupkaetal. 1999). In addition to the standard lists of wavelengths than the surrounding atmosphere (e.g., see Fig. 9 transitions between measured energy levels, this includes a new of Lu¨ftingeretal. 2010a). Contrary to the impression conveyed massivepredictedlinelistcalculatedbyR.Kurucz1anddiscussed by S12, thisprominent influence of chemical composition on the byGrupp,Kurucz&Tan(2009).Thesespectrallinedataareessen- structure of stellar surface layers is well-known to the Ap star tialforaccurateopacitycalculationsinthecontextofApstaratmo- community and has been addressed in numerous applications of sphericmodelling,especiallyforlargeFeoverabundancesexplored theLLMODELScodetoindividualstars(Kochukhovetal.2009b; inthisstudy.Itisnotclearwhatpredictedlinelistwasemployed Shulyak,Kochukhov&Khan 2008; Shulyaketal. 2009, 2010b; byS12. Lu¨ftingeretal.2010a)–asignificantandfertileresearchdirection, The distribution of temperature with optical depth for five seeminglyunnoticedbyS12. LLMODELSatmospheres computed for different Feabundance is illustratedinFig.2.Lookingattheplotoftemperatureasafunction 3.2 Locallineprofilesandcontinuumintensities ofτ5000,weseeaprominentbackwarming,whichleadstoasteeper temperaturegradientandchangesthetemperatureatlogτ5000 =0 Toinvestigaterepercussionsofmetallicity-inducedchangesofat- by500–1500K.Theseeffectsarelessextremeinthehigheratmo- mospheric structure on the local line shapes and continuum in- sphericlayerscorrespondingtothetypicalline-formingregions. tensity, we computed the Stokes IQUV profiles of the FeII Itisimportanttorealize,however,thatτ5000 reflectschanges 5018.44 A˚ line using polarised spectrum synthesis code SYN- inthemodelstructureonlyatonewavelength.Thus,examiningthe MAST (Kochukhov,Makaganiuk&Piskunov 2010). Thisspectral plotofT vs.τ5000,onecanonlysaythatforthemodelswithdif- line choice is determined by previous magnetic DI studies (K04, ferentironabundancetheformationdepthofthecontinuumfluxat KW10), where this feature, along with FeII 4923.93 A˚, was one λ = 5000A˚ correspondstosubstantiallydifferentlocaltempera- of the very few individual metal lines showing detectable lin- ture.Butthispictureandtheresultingconclusions maychangeif ear polarisation signature in the MuSiCoS four Stokes param- one chooses a monochromatic optical depth which is weakly af- eter spectra of Ap stars (Wadeetal. 2000). As emphasised by fectedbytheFeabundance. KW10, FeII 4923 and 5018 A˚ generally represent a poor choice Amorenaturalwaytocomparemodelatmospherestructures for Doppler imaging of chemical spots because these lines are istoplotphysicalquantitiesagainstanopticaldepthcomputedwith saturated in a typical spectrum of a Fe-rich Ap star and thus somemeanopacitycoefficient.Inparticular,anopticaldepthbased are weakly sensitive to the horizontal abundance variations. On on the Rosseland opacity coefficient κR has a certain advantage: the other hand, strong lines are noticeably affected by vertical spectralregionswiththesmallestopacitiestransfermostofthera- abundancestratification(Ryabchikova,Leone&Kochukhov2005; diativeenergyandatthesametimecontributemosttoκR.Exam- Kochukhovetal. 2006), which is usually ignored in Doppler ining the physical quantities of different models as a function of mapping.Non-magneticabundanceDIanalyses(Kochukhovetal. τR allowsone totracechanges of themodel structure on anatu- 2004b; Lu¨ftingeretal. 2010a) as well as MDI studies based on raldepthscalerepresentingfrequency-integratedpropertiesofthe theStokesIandV spectra(Kochukhovetal.2002;Lu¨ftingeretal. radiationfield. 2010b)normallyavoidsuchstronglines,dealingwithweakorin- ThelowerpanelinFig.2illustratesthedepthdependenceof termediatestrengthfeatures.Toassesshowthelatterlinesbehave temperatureforthesamesetof LLMODELSatmospheresasmen- intheFe-richLLMODELSatmospheres,wehavecomputedasec- tionedabove,butnowasafunctionofτR.Itisobviousthattheef- ondsetofStokesprofilesforafictitiousweakerironlinewiththe fectsofdifferentironabundance introducemuchsmallerchanges same parameters as FeII 5018.44 A˚, but with loggf reduced by comparedtothoseimpliedbytheT vs.τ5000plot.Inparticular,the 1dex. temperaturevariationbetweendifferentmodelsisreducedtoonly Startingfromthenon-magneticcase,weshowinFig.3anor- afewhundredK.Inthesub-photosphericlayersT(τR)isverysim- malised disk-centre Stokes I profiles of FeII 5018.44 A˚ and the ilarforallmodelssimplybecauseofthefundamental propertyof weaker line for all five model atmospheres discussed above. One τR:whenτR ≫ 1thetemperaturedistributionasymptoticallyap- set of line profiles was computed self-consistently with the Fe proaches that of agrey model, which, asiswellknown, depends abundance adopted for the model atmosphere calculation, while onlyonTeff andτR.Therefore,regionsofthesameτRexhibitthe another set representstheusual approach based onameanatmo- sametemperature. sphericmodelwithlogNFe/Ntot =−3.79anddifferentFeabun- Concluding, a huge variation in the model temperature dis- dancesinthespectrumsynthesis.Thesecalculationswererepeated tributionsplottedagainst τ5000 shouldnot bemistakenforanex- for a 3.5 kG longitudinal field as well as for a4.0 kG transverse haustiveandcompletecomparisonofdifferentmodels.Acomplete fieldinordertoassessanyimpactoftheatmosphericstructureon analysisshouldalwaysincludenotonlycomparisonsofthedepth- the Stokes V and Q profiles, respectively. The V and Q spectra dependent thermodynamic properties, but also different spectro- areillustratedinFig.3bandc.Allcalculationsincludedconvolu- tionwithaGaussianinstrumentalprofilesappropriateforthefour Stokes parameter MuSiCoS observations employed by K04 and 1 http://kurucz.harvard.edu/atoms.html KW10. MagneticDopplerimagingconsideringmetallicity-dependentatmosphericstructure 7 Figure3.Comparisonofthenormaliseddisk-centreprofilesoftheFeII5018.44A˚ line(lowerprofilesineachpanel)computedself-consistentlyforthemodel atmosphereswithdifferentironabundances(solidlines)withtheprofilescalculatedforthesameabundancesandasinglemeanatmosphere(dashedlines). ThesamecomparisonispresentedforafictitiousweakerFeIIline(upperprofilesineachpanel).Thecorrespondingspectraareshiftedverticallyby0.2ofthe continuum.Thethreerowsofplotsshowcalculationsfora)StokesIintheabsenceofmagneticfield,b)StokesV forthe3.5kGlineofsightmagneticfield, c)StokesQforthe4.0kGtransversemagneticfield. Figure4.Maximumrelativeprofiledifferenceofthenormaliseddisk-centre Figure5. SameasFig.4forthemaximumrelativeprofiledifferenceofthe StokesIspectraoftheFeII5018.44A˚ linecalculatedself-consistentlywith normaliseddisk-centreStokesV inthe3.5kGlineofsightfield(circles) amodelatmospherestructureandusingasinglemeanmodelatmosphere. andStokesQinthe4.0kGtransversefield(triangles). Symbolsshowcalculationsforzeromagneticfield(circles),3.5kGlineof sightfield(triangles),and4.0kGtransversefield(squares). calculationsexceptforthestrongestline,forminginthemostFe- richatmosphere.Eveninthatcase,thediscrepancyisonly4%of Figures 3a–c leave no doubt that the difference between the thecontinuumforthelinewhichis83%deep.Ingeneral,themax- normalisedlocallineprofilescomputedwithdifferentmodelatmo- imumrelativedifferencedoesnotexceedseveral%oftheStokesI spheresandwithameanatmosphereanddifferentFeabundances profileamplitudeforFeII5018.44A˚ (Fig.4)andisentirelynegli- isextremelysmall.Onecannotvisuallydistinguishthetwosetsof gibleforaweakerline. 8 O. Kochukhov,G. A. WadeandD. Shulyak atmosphere).Asdiscussedabove,wedonotexpectthisregionto contributesignificantlytothedisk-integratedlineprofiles.Thisis directlyconfirmedbythespectrumsynthesiscalculationspresented inthenextsection. 4 MAGNETICDIWITHSELF-CONSISTENTMODEL ATMOSPHERESTRUCTURE 4.1 MagneticinversioncodeInvers13 Wehavecarriedoutaseriesofforwardlineprofilecalculationsto assesstheimpactoftheanomalouslocalmodelatmospherestruc- tureonthedisk-integratedStokesspectraofα2CVn.Fortheseex- perimentsweusedournewmagneticDIcodeINVERS13.Thisef- Figure6.Relative continuumintensity atλ=5018.44A˚ asafunctionof ficientandversatilecoderepresents afurtherdevelopment of our theFeabundanceadoptedforthemodelatmospherecalculation. magnetic inversion tool INVERS10, which has been described in detailbyPK02,evaluatedbyKochukhov&Piskunov(2002),and wassubsequentlyappliedinseveralstudiesofanon-uniformdistri- How does this difference compare with the sensitivity of butionofmagneticfieldsandchemicalabundancesonthesurfaces StokesI toabundancevariation?ConsideringtheFeII5018.44A˚ ofApstars(K04,KW10,Lu¨ftingeretal.2010b;Kochukhovetal. lineforthemodelwithlogNFe/Ntot =−2.19,wefoundthatthe 2011). Fe abundance needs to be changed by just ≈0.10 dex, or 2% of INVERS13 and INVERS10 adopt similar regularisation and thelogarithmicFeabundancerangeforα2CVn,toobtainthesame non-linearoptimisationstrategies,basedontheTikhonovregular- maximumprofiledifferenceasseeninFig.4. isation and modified Levenberg-Marquardt method, respectively. The metallicity-induced modification of the atmospheric However,insteadofusingasinglemodelatmospherestructureas structureleadstoatinyvariationofthenormalisedStokesV andQ wasdoneinallpreviousDIstudiesofApstars,INVERS13iscapa- profiles,illustratedinFig.3bandc,respectively.Intheworstcase bleofmappingthethreecomponentsofthemagneticfieldvector scenario,thesechangesamounttoabout0.05–0.10ofthefullpo- andtreatingsimultaneouslyoneadditionalscalarsurfacemap(tem- larisationprofileamplitude(seeFig.5).Generally,thepolarisation perature, abundance of a given element, magnetic field strength) profiles become slightly broader, while their low-order moments fully self-consistently with the local model atmosphere structure. remainunchanged. ThebasicmethodologyofapplyingINVERS13toApstarsisthus The full Stokes profile calculations presented in this section verysimilartoaself-consistentmagneticandtemperaturemapping fullysupporttheconclusionbyKW10that“thelocallineprofiles ofcoolactivestars,exceptthattheparameterdistinguishingdiffer- are sensitive to model structure effects to a much smaller degree ent local model atmospheres is a chemical abundance instead of thantochangesofabundanceormagneticfield”.Atthesametime, Teff. enhancedmetallicityleavesamajorimprintonthecontinuumin- At the start of calculations, a grid of model atmo- tensity, which is increased in the optical due to the flux redistri- spheres (either ATLAS, MARCS or LLMODELS) is pro- bution from the short-wavelength regions. Figure 6 demonstrates cessed by INVERS13. The equations of chemical equilib- that the Fe-rich zones are expected to be up to 40% brighter in rium (cool atmospheres) or ionisation balance (hot atmo- thecontinuumatλ5018.44A˚ withrespecttothereferencemodel, spheres) are solved with the help of a robust molecular whiletheregionswitharelativeFeunderabundanceturnouttobe equilibrium solver (Valenti,Piskunov&Johns-Krull 1998) im- upto10%fainter.Theconsequencesofthesecontinuumintensity plemented in SME (Valenti&Piskunov 1996) and in the changesforthedisk-integratedStokesIQUV profilesandforthe SYNTH3/SYNTHMAG/SYNMAST family of codes (Kochukhov reconstructionofthesurfaceabundanceandmagneticfielddistri- 2007; Kochukhovetal. 2010). Then, INVERS13 calculates the butionswillbeaddressedinthenextsection. depth-dependent line and continuum opacity coefficients for all Thegeneralconclusionregardingtheinsignificanceofthedif- model atmospheres and all molecular and atomic spectral lines ferential line-blanketing for the local spectral line shapes emerg- included in the input list. The atomic line parameters are taken ingfromourcalculationsseemstobedrasticallydifferentfromthe from VALD (Kupkaetal. 1999), whereas the data on molec- claimsmadebyS12inSection4oftheirpaper.Thisdiscrepancy ular transitions are taken from the MARCS opacity database comes from the fact that S12 have neglected to consider the en- (Gustafssonetal.2008). tireFeabundancerangeanddifferentlinestrengths,limitingtheir Thecoremoduleof INVERS13isthequadraticDELOalgo- discussiontotheprofileofasingle,verystronglinecomputedfor rithm for highly accurate solution of the LTE polarised radiative extreme Fe overabundances which occupy a tiny fraction of the transfer equation in an arbitrary stellar atmosphere permeated by visiblesurfaceofα2CVn.Inaddition,theirlocal profileanalysis a depth-independent magnetic field with a given (local) strength lackedacomparisonoftheintensitydifferenceswiththeactualpro- andorientation.PK02demonstratedthatthequadraticDELOfor- fileamplitude,asinourFig.3,anddidnotatalladdresspolarisa- mal solver is superior in terms of the speed and accuracy to the tionspectra.Asrevealedbyourmorecomprehensivecalculations, ZeemanFeautriermethodusedbyS12.Foreachelementinastel- theatmospheric structurevariationsresult inasystematicchange lar surface grid optimally sampling different latitudes (see Fig.5 ofthecontinuumfluxesbuthasaminusculeinfluenceonthenor- inPK02),ourcodeevaluatesthelineabsorptionmatrixbyadding malisedintensityandpolarisationlinesshapes,exceptforasmall opacitiesofallcontributingZeemancomponentsandcomputesthe regionoftheparameterspace(thestrongestlineinthemostFe-rich local Stokes IQUV profiles and continuum intensity Ic by per- MagneticDopplerimagingconsideringmetallicity-dependentatmosphericstructure 9 formingaquadraticinterpolationwithinthreesetsofmodelspec- tra corresponding to the model atmospheres bracketing the value of a scalar parameter. This also yields precise derivatives of the StokesIQUV spectraandassociatedintensityIcwiththerespect to ascalar parameter distinguishing different models in the input model atmosphere grid. One-sided derivatives withrespect tothe radial,meridional,andazimuthalmagneticfieldvectorcomponents arecomputednumerically.ThefullcalculationofthelocalStokes spectraandtheirderivativesthusconsistsof12separatepolarised lineprofilecalculationsforeverysurfaceelementateveryrelevant rotationalphase. The local profiles are convolved with a Gaussian function tomodelinstrumentalandradial-tangentialmacroturbulentbroad- ening. Profilesare Doppler-shifted and summed with appropriate weightsforeachrotationalphase.Asimilarphase-dependentdisk- integrationiscarriedoutforthecontinuumintensity.Theresulting StokesIQUV spectraarenormalisedbytherespectivecontinuum fluxes.Thematrixofpartialderivativesofeveryobservedspectral pixelwithrespecttoeverysurfaceparameterisestablishedtaking intoaccount boththemagnetic and model structuresensitivityof thelineprofilesandthemodelatmospheresensitivityofthecontin- uumfluxes.Usingthesederivatives,thecodeestablishesthecurva- turematrixrequiredbytheLevenberg-Marquardt algorithm,adds regularisationtermsanditerativelyadjustssurfacemapstomatch theobservations. INVERS13 takes advantage of the standard MPI libraries available at any modern multi-CPU computer to perform highly efficientparallelradiativetransfercalculationswithanovelmaster- slavetechniquediscussedbyPK02.Weusuallyrunthecodewith onemasterprocesscollectingresultsoftheradiativetransfercalcu- lationsby16–32slaveprocesses.Thecodewassuccessfullytested, showingalinearscaling,withuptoseveralhundredCPUsinsimul- taneousinversionsofoverathousand atomicandmolecularlines spread over ten wavelength intervals. In practice, the number of spectrallinesandwavelengthintervalsmodelledsimultaneouslyis limitedonlybytheavailableRAM.Forthecalculationsdescribed here, modelling of one or twoFeII spectral linesat 20 rotational phases required less than one minute of computing time for the forward spectrum synthesis and about threehours for a complete inversiononamodest,10-year-old16-CPUcomputer.Thisexperi- enceshowsthatcurrentlyavailablecomputingresourcesandstan- dardscientificprogrammingtechniquesbasedonwell-established FORTRANcodesenableafullyrealistictreatmentofthelateralvari- ation of stellar atmosphere, without arecourse tothe next gener- ation computers or exotic programming languages advocated by S12. INVERS13wasrigourouslytestedwithnumericalexperiments forcool activestarsusingsimulatedcircularpolarisationand full Stokes vector data (Kochukhov&Piskunov 2009). Thecode was also applied to interpret circular polarisation observations of the activeRSCVnstarIIPeg(Kochukhovetal.2009a).Acomprehen- Figure7.TheoreticalfourStokesparameterprofilesoftheFeII5018.44A˚ siveMDIstudyofthistargetiscurrentlyunderway. linecorrespondingtothefinalmagneticandabundancemapsderivedfor α2CVnby KW10.This plot compares the self-consistent profiles (solid line)withthestandardcalculationsusingameanmodelatmosphere(dashed 4.2 Disk-integratedIQUV profilesoftheFeII5018A˚ line line). For comparison, we also show profiles for the smoothed magnetic fieldgeometrymodeldiscussedbyKW10(dottedline).Spectraforconsec- We have used the forward polarised spectrum synthesis calcula- utiverotationalphasesareshiftedvertically.Rotationalphasesareindicated tionswithINVERS10andINVERS13todirectlyanswertheques- ontheright.Thebarsatthelowerrightofeachcolumnshowthehorizon- tion of how important is the local atmospheric structure for the talandvertical scale(0.5A˚ and1%oftheStokesI continuum intensity KW10 analysis of the Fe abundance distribution and magnetic respectively). field geometry of α2CVn. We adopted the magnetic and abun- dancemapsderivedinthatstudyandemployed asingle ATLAS9 modelatmospherewithparametersTeff=11600K,logg=3.9and 10 O. Kochukhov,G. A.WadeandD. Shulyak canbecompensatedbyamere∼0.1dexreductionoftheaverage Feabundance,soitisnotimmediatelyobviousthataccountingfor thelocalatmosphericstructureshouldleadtoanymajorchangeof theabundanceinversionresultsandremoveextremelyhighabun- dancesfromtheFemap. Atthesametime,itisstrikingtoseehowlittleeffecttheuse ofself-consistentmodellingoftheStokesprofileshasonthelinear and circular polarisation spectra. The discrepancy in Stokes V is only0.2–0.4%, whichexceedstheobservational uncertaintiesbut isnegligiblecomparedtothemaximumcircularpolarisationsignal of9%.Theimpactonthelinearpolarisationspectraisevensmaller. ItisevidentfromFig.8thataccountingforthelocalatmospheric structurechangesStokesQandU byabout0.1%,whichisbelow thenoiselevelofobservationsforallbuttworotationalphases. Itisenlighteningtocomparethedifferencebetweenthestan- dard INVERS10 calculation and self-consistent INVERS13 model withthediscrepancy betweentheformer spectraandthosecorre- sponding to the smoothed version of the magnetic field topology of α2CVn(thick solidline inFig. 8). Weremind thereader that thisdiscrepancy,constitutingthemainevidenceforthesmall-scale magneticfieldsinα2CVn,wasdismissedbyS12asinsignificant. Figures7and8leavenodoubtthattheconclusionsofS12areer- roneous. A signature of the small-scalefields yields a systematic Figure 8. Phase dependence ofthe amplitude, observational uncertainty, modulation of the linear polarisation spectra, which is above the andthedifferencebetweentheoreticalStokesparameterprofilesillustrated observational noise for 15 out of 20 rotational phases in Stokes inFig.7.ThisplotcomparestheamplitudeofStokesprofiles(blacksolid Qandfor18phasesinU.Weseethattheactualsituationisjust line)withthediscrepancybetweenthestandardandself-consistentcalcu- the opposite of that claimed by S12 in Sections 5 and 7 of their lation(dashedline),andobservationaluncertainty(dottedline).Forcom- work:theinfluenceofstructuredfieldsishighlysignificantforthe parison,wealsoshowthedifferencebetweenthestandardprofilesandthe spectracorrespondingtothesmoothedmodelofthemagneticfieldtopology StokesVQUprofiles,whiletheassumptionofameanmodelatmo- (redsolidline). sphereislargelyunimportantforV andcompletelynegligiblefor QUeveninthispessimisticassessment(noabundanceadjustment, astrongline). [M/H]=+1.0forthefullStokesparametersynthesisoftheFeII TheresultsoftheforwardfullStokesprofilecalculationsun- 5018.44A˚ linewithINVERS10.Thesecalculationsareidenticalto equivocallydemonstratethatthespeculationsbyS12aboutthesig- the final Stokes profilefitspresented by KW10. In particular, we nificanceofthelocalmodelatmospherestructureforthemodelling considerthesamesetofrotationalphasesandtakeintoaccountthe ofpolarisationinα2CVnareincorrect.Atthispointthereaderis spectralresolutionoftheMuSiCoSStokesvectordataavailablefor certainly entitled to ask what led S12 to these erroneous conclu- α2CVn. sions.TheFedistributionconsideredbyS12inSection5oftheir AnothersetoflineprofileswasproducedwiththeINVERS13 paperappearstobefarmoreextreme(log(NFe/Ntot) > −2over codeusingthegridofLLMODELSatmospheresdiscussedinSec- 18%ofthevisiblestellarsurfacerightatthediskcentre)compared tion 3.1. To avoid extrapolation in Fe abundance, we augmented totheonefound for α2CVnbyKW10(only 2.5%of thevisible thisgridwithtwoextrememodelscomputedforlogNFe/Ntot = surfaceclosetothelimb).Theunspecified“eccentricdipole”with −1.60 and −6.40. We checked that using a denser grid of 13 an unusually high contrast (fieldstrength variation by a factor of modelatmospheresmakesnodifference.Theresultingnormalised 3.7insteadofafactorof2expectedforacentreddipole)seemsto INVERS10andINVERS13Stokesparameterprofilesarecompared havebeenhand-pickedtomaximiseprofiledifferences.Curiously, inFig.7.Inaddition,weplotasetofsyntheticINVERS10Stokes describingtheStokesparametercalculationsforthislargeFespot IQUV parameters corresponding to the smoothed model of the and unusual magnetic geometry, S12 do not mention taking into magnetic field geometry of α2CVn discussed by KW10. A de- accounttheinstrumentalprofileofthespectrograph,althoughthey tailedassessment of thedifference betweenthe“standard”, “self- stressamoderateresolutionoftheMuSiCoSfourStokesparame- consistent”and“smoothed”modelprofileswithrespecttotheob- ter data elsewhere in the paper. It is also very surprising that the servational uncertainties is presented in Fig. 8. We note that for QandU profiles,forwhichtheeffectofself-consistentmodelling polarisationthiscomparisonrepresentsaconservativeestimateof istheleastimportantbutwhichconverselyhaveplayedakeyrole possible errors because we do not allow the code to adjust the inthediscoveryofsmall-scalemagneticfeaturesonthesurfaceof StokesIprofileintensityasitwoulddoinarealmagneticinversion α2CVn,arecompletelyneglectedinthatpartoftheS12paper. (seediscussioninSection2.3),therebyimprovingthefittoQUV. CalculationspresentedinSection7oftheS12paperaresim- Whatcanwelearnfromthiscomparison?Clearly,theeffectof ilarly inadequate. In that part of their study the authors claimed self-consistentcalculationsisnoticeableforStokesI.Theintensity to have assessed the feasibility of detecting a representative sig- profile changes by 2–4% of the continuum, which is not negligi- nalofahigh-contrastmagneticspot.However,thescenarioconsid- blecomparedtothecentrallineintensityof27–35%.Inagreement eredisnot applicable tothecaseof α2CVnbecause theadopted withthepredictionmadeinSection3.2,theself-consistentinten- spot diameter is underestimated by a factor of two and the im- sityprofilesaresystematicallydeeper duetoanincreasedcontin- posedcorrelationofthesmall-scaleabundanceandmagneticfield uumbrightnessoftheFe-richsurfaceregions.However,thiseffect enhancementsiscontrarytowhatwasfoundforthatstar.Further-

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.