Macromolecular Engineering Editedby Krzysztof Matyjaszewski, Yves Gnanou, andLudwikLeibler MacromolecularEngineering.PreciseSynthesis,MaterialsProperties,Applications. EditedbyK.Matyjaszewski,Y.Gnanou,andL.Leibler Copyright©2007WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:978-3-527-31446-1 1807–2007 Knowledge for Generations Each generation has its unique needs and aspirations. When Charles Wiley first openedhis small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Onceagain, we werethere, supplying the criticalscientific,technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own bordersand a new international community was born.Wiley was there, ex- panding its operations around the world to enable a global exchange of ideas, opinions,and know-how. For 200 years, Wiley has been an integral part of each generation’s journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new oppor- tunities. Generations come and go, but you can always count on Wiley to provide you the knowledge you need,when and whereyou need it! WilliamJ. Pesce PeterBooth Wiley Presidentand Chief ExecutiveOfficer Chairman of the Board Macromolecular Engineering Precise Synthesis, Materials Properties, Applications Edited by Krzysztof Matyjaszewski, Yves Gnanou, and Ludwik Leibler Volume 1 Synthetic Techniques TheEditors (cid:1) AllbookspublishedbyWiley-VCHarecarefully produced.Nevertheless,authors,editors,and Prof.Dr.KrzysztofMatyjaszewski publisherdonotwarranttheinformationcontained CarnegieMellonUniversity inthesebooks,includingthisbook,tobefreeof DepartmentofChemistry errors.Readersareadvisedtokeepinmindthat 4400FifthAve statements,data,illustrations,proceduraldetailsor Pittsburgh,PA15213 otheritemsmayinadvertentlybeinaccurate. USA LibraryofCongressCardNo.:appliedfor Prof.Dr.YvesGnanou BritishLibraryCataloguing-in-PublicationData LaboratoiredeChimiedesPolymèresOrganiques Acataloguerecordforthisbookisavailable 16,avePey-Berland fromtheBritishLibrary. 33607Pessac Bibliographicinformationpublishedby France theDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublica- Prof.Dr.LudwikLeibler tionintheDeutscheNationalbibliografie;detailed UMR167CNRS-ESPCI bibliographicdataareavailableintheInternetat ÉcoleSupérieuredePhysique http://dnb.d-nb.de. etChimieIndustrielles 10rueVauquelin ©2007WILEY-VCHVerlagGmbH&Co.KGaA, 75231ParisCedex05 Weinheim,Germany France Allrightsreserved(includingthoseoftranslation intootherlanguages).Nopartofthisbookmay bereproducedinanyform–byphotoprinting, microfilm,oranyothermeans–nortransmitted ortranslatedintoamachinelanguagewithout writtenpermissionfromthepublishers. Registerednames,trademarks,etc.usedinthis book,evenwhennotspecificallymarkedassuch, arenottobeconsideredunprotectedbylaw. Composition K+VFotosatzGmbH,Beerfelden Printing betz-druckGmbH,Darmstadt Bookbinding Litges&DopfGmbH,Heppenheim Cover Grafik-DesignSchulz,Fußgönheim WileyBicentennialLogo RichardJ.Pacifico PrintedintheFederalRepublicofGermany Printedonacid-freepaper ISBN978-3-527-31446-1 V Contents Preface XXV List of Contributors XXVII Volume 1 Synthetic Techniques 1 Macromolecular Engineering 1 Krzysztof Matyjaszewski,Yves Gnanou,andLudwik Leibler 2 Anionic Polymerization of Vinyl and Related Monomers 7 MichelFontanilleandYves Gnanou 2.1 Introduction 7 2.2 General Featuresof Anionic Polymerization 8 2.2.1 Polymerizability ofVinyl and Related Monomers 9 2.2.2 VariousParametersInfluencing the Structure and Reactivity ofActiveCenters 11 2.2.2.1 Influence ofthe Type of Monomer 12 2.2.2.2 Influence ofthe Nature ofSolvent 13 2.2.2.3 Influence ofAdditives 15 2.2.2.4 Influence ofthe Counterion 16 2.2.3 Experimental Constraints Related to Anionic Polymerization 17 2.3 Initiation ofAnionic Polymerizations 17 2.3.1 Initiation by Electron Transfer 18 2.3.2 Initiation by Nucleophilic Addition to the Double Bond 19 2.3.2.1 In Polar Solvents 19 2.3.2.2 In Nonpolar Solvents 21 2.3.2.3 Bi- and Multifunctional Initiators 25 2.3.3 Initiation by Alkoxides and Silanolates 29 2.3.4 Initiation ofthe Polymerization ofAlkyl (Meth)acrylates by Group Transfer 29 2.4 Propagation Step 30 2.4.1 Kineticsofthe Propagation Step 31 MacromolecularEngineering.PreciseSynthesis,MaterialsProperties,Applications. EditedbyK.Matyjaszewski,Y.Gnanou,andL.Leibler Copyright©2007WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:978-3-527-31446-1 VI Contents 2.4.1.1 KineticsofPolymerization in Non-polar Solvents 31 2.4.1.2 Polymerizations CarriedOut in Polar Media 34 2.4.2 Anionic Polymerization of (Meth)acrylic Monomers 36 2.4.2.1 General Characteristics 36 2.4.2.2 Propagation by GroupTransfer 37 2.4.3 Anionic Copolymerization 38 2.4.4 Regio-and Stereoselectivityin Anionic Polymerization 39 2.4.4.1 Casesof Conjugated Dienes 39 2.4.4.2 Case ofVinyl and Related Monomers 40 2.5 Persistenceof ActiveCenters 42 2.5.1 Case ofPolystyrenic Carbanions 43 2.5.2 Case ofPolydieneCarbanions 44 2.5.3 Case of(Meth)acrylic Polymers 44 2.6 Application of Anionic Polymerization to Macromolecular Synthesis 45 2.6.1 Predictionof MolarMassesand ControlofTheir Dispersion 46 2.6.2 Functionalization ofChain Ends 46 2.6.3 Synthesis of Graft and BlockCopolymers 47 2.6.4 Star Polymers 48 2.6.5 MacrocyclicPolymers 49 References 50 3 Carbocationic Polymerization 57 PriyadarsiDe andRudolfFaust 3.1 Introduction 57 3.2 Mechanistic and Kinetic Details ofLiving Cationic Polymerization 58 3.3 Living Cationic Polymerization 60 3.4 Monomersand Initiating Systems 61 3.5 Additivesin Living Cationic Polymerization 61 3.5.1 Isobutene(IB) 62 3.5.2 (cid:1)-Pinene 64 3.5.3 Styrene (St) 65 3.5.4 p-Methylstyrene (p-MeSt) 65 3.5.5 p-Chlorostyrene(p-ClSt) 66 3.5.6 2,4,6-Trimethylstyrene (TMeSt) 66 3.5.7 p-Methoxystyrene (p-MeOSt) 66 3.5.8 (cid:2)-Methylstyrene ((cid:2)MeSt) 67 3.5.9 Indene 67 3.5.10 N-Vinylcarbazole 68 3.5.11 Vinyl Ethers 68 3.6 Functional Polymersby Living Cationic Polymerization 70 3.6.1 Functional Initiator Method 70 3.6.2 Functional TerminatorMethod 72 3.7 Telechelic Polymers 74 Contents VII 3.8 Macromonomers 76 3.8.1 Synthesis Using a Functional Initiator 76 3.8.2 Synthesis Using a Functional Capping Agent 78 3.8.3 Chain-end Modification 80 3.9 Block Copolymers 80 3.9.1 LinearDiblockCopolymers 81 3.9.2 LinearTriblockCopolymers 84 3.9.2.1 Synthesis Using Difunctional Initiators 84 3.9.2.2 Synthesis Using Coupling Agents 85 3.9.3 Block Copolymerswith Nonlinear Architecture 86 3.9.4 Synthesis of A B Hetero-armStar-blockCopolymers 87 n n 3.9.5 Synthesis of AA(cid:1)B, ABB(cid:1) and ABC Asymmetric Star-block CopolymersUsing Furan Derivatives 87 3.9.6 Block CopolymersPreparedby the Combinationof Different Polymerization Mechanisms 89 3.9.6.1 Combinationof Cationic and Anionic Polymerization 89 3.9.6.2 Combinationof Living Cationic and Anionic Ring-opening Polymerization 90 3.9.6.3 Combinationof Living Cationic and Radical Polymerization 92 3.10 Branched and HyperbranchedPolymers 93 3.10.1 Surface-initiatedPolymerization: Polymer Brushes 94 3.11 Conclusions 94 References 95 4 Ionic and Coordination Ring-opening Polymerization 103 StanislawPenczek,AndrzejDuda,PrzemyslawKubisa, andStanislawSlomkowski 4.1 Introduction 103 4.2 Thermodynamics of Ring-opening Polymerization 106 4.2.1 Equilibrium MonomerConcentration–Ceiling/ FloorTemperatures 106 4.2.2 RecentResults Related to Thermodynamics of Ring-opening Polymerization 107 4.2.2.1 Thermodynamics of (cid:3)-Butyrolactone (Co)polymerization 107 4.2.2.2 Copolymerization ofLactideat the Polymer–Monomer Equilibrium 108 4.3 BasicMechanistic FeaturesofRing-opening Polymerization 109 4.3.1 Anionic and CoordinationRing-opening Polymerization ofCyclic Ethers and Sulfides 109 4.3.1.1 Initiators and Initiation 109 4.3.1.2 ActiveCenters– Structures and Reactivities 110 4.3.1.3 ControlledAnionic and CoordinationPolymerization ofOxiranes 111 4.3.1.4 StereocontrolledPolymerization ofChiral Oxiranes 113 VIII Contents 4.3.2 ControlledSynthesis of Aliphatic Polyesters by Anionic and CoordinationRing-opening Polymerization 114 4.3.2.1 Initiators and ActiveCenters –Structures and Reactivities 114 4.3.2.2 ControlledPolymerization ofCyclic Esters with “Multiple-site”Metal Alkoxides and Carboxylates 118 4.3.2.3 ControlledPolymerization ofCyclic Esterswith “Single-site” Metal Alkoxides 121 4.3.2.4 Poly((cid:1)-hydroxybutyrate)s by Carbonylation ofOxiranes 121 4.3.2.5 StereocontrolledPolymerization ofChiral Cyclic Esters 122 4.3.2.6 StereocomplexesofAliphatic Polyesters 126 4.3.3 ControlledSynthesis of Aliphatic Polycarbonates by Anionic and CoordinationRing-opening Polymerization 127 4.3.4 ControlledSynthesis of Branched and Star-shaped Polyoxiranes and Polyesters 129 4.3.4.1 Anionic Polymerization of Oxiranes 129 4.3.4.2 CoordinationPolymerization of Cyclic Esters 131 4.3.5 ControlledSynthesis of Polyamides by Anionic and Coordination Ring-opening Polymerization 132 4.3.5.1 Polymerization ofLactams 132 4.3.5.2 Polymerization ofN-Carboxyanhydridesof(cid:2)-Amino Acids (NCAs) 134 4.3.6 Cationic Ring-opening Polymerization 136 4.3.6.1 Propagation in Cationic Ring-opening Polymerization 137 4.3.6.2 Chain Transferto Polymer in Cationic Ring-opening Polymerization 138 4.3.6.3 ActivatedMonomerMechanism in Cationic Ring-opening Polymerization ofCyclic Ethers and Esters 140 4.3.6.4 Branched and Star-shaped PolymersPrepared by Cationic Ring-opening Polymerization 144 4.3.7 Cationic Polymerization of Cyclic Imino Ethers (Oxazolines) 145 4.4 DispersionRing-opening Polymerization 146 4.5 Conclusion 149 References 150 5 Radical Polymerization 161 Krzysztof MatyjaszewskiandWadeA. Braunecker 5.1 Introduction 161 5.2 Typical FeaturesofRadical Polymerization 162 5.2.1 Fundamentals of Organic Radicals 162 5.2.2 Elementary Reactionsand Kinetics 163 5.2.3 Copolymerization 165 5.2.4 Monomers 166 5.2.5 Initiators for RP 166 5.2.6 Additives 168 5.2.7 Typical ConditionsforRP 168 Contents IX 5.2.8 Commercially Important Polymersby RP 169 5.2.8.1 Polyethylene 169 5.2.8.2 Polystyrene 169 5.2.8.3 Poly(vinyl chloride)(PVC) 170 5.2.8.4 Poly(meth)acrylates 170 5.2.8.5 Other polymers 170 5.3 Controlled/LivingRadical Polymerization 171 5.3.1 General Concepts 171 5.3.2 Similarities and DifferencesBetween RPand CRP 172 5.4 SFRPand NMP Systems– Examples and Peculiarities 173 5.4.1 Monomersand Initiators 174 5.4.2 General Conditions 175 5.4.3 ControlledArchitectures 175 5.4.4 Other SFRP Systems 175 5.5 ATRP – Examples and Peculiarities 176 5.5.1 BasicATRP Components 177 5.5.1.1 Monomers 177 5.5.1.2 Initiators 178 5.5.1.3 TransitionMetal Complexesas ATRP Catalysts 179 5.5.2 Conditions 180 5.5.3 ControlledArchitectures 182 5.6 DegenerativeTransferProcessesand RAFT 182 5.6.1 Monomersand Initiators 184 5.6.2 TransferAgents 185 5.6.3 ControlledArchitectures 185 5.7 Relative Advantages and Limitations ofSFRP, ATRP and DT Processes 185 5.7.1 SFRP 186 5.7.2 ATRP 186 5.7.3 RAFTand Other DT Processes 186 5.8 ControlledPolymer Architectures by CRP: Topology 187 5.8.1 LinearChains 188 5.8.2 Star-like Polymers 188 5.8.3 Comb-likePolymers 189 5.8.4 Branched and HyperbranchedPolymers 191 5.8.5 DendriticStructures 192 5.8.6 Polymer Networksand Microgels 192 5.8.7 Cyclic Polymers 192 5.9 Chain Composition 193 5.9.1 Statistical Copolymers 193 5.9.2 Segmented Copolymers (Block, Graftsand Multisegmented Copolymers) 193 5.9.2.1 Block Copolymersby a Single CRP Method 193 5.9.2.2 Block Copolymersby Combination ofCRP Methods 194 X Contents 5.9.2.3 Block Copolymerizationby SiteTransformation and Dual Initiators 195 5.9.2.4 Multisegmented Block Copolymers 196 5.9.2.5 StereoblockCopolymers 197 5.9.3 Graft Copolymers 197 5.9.4 PeriodicCopolymers 199 5.9.5 Gradient Copolymers 199 5.9.6 MolecularHybrids 199 5.9.7 Templated Systems 200 5.10 Functional Polymers 200 5.10.1 Polymerswith SideFunctional Groups 201 5.10.2 End-group Functionality: Initiators 202 5.10.3 End-group Functionality Through Conversionof Dormant Chain End 202 5.11 Applications ofMaterials Preparedby CRP 203 5.11.1 Polymerswith ControlledCompositions 204 5.11.2 Polymerswith ControlledTopology 204 5.11.3 Polymerswith ControlledFunctionality 204 5.11.4 Hybrids 205 5.12 Outlook 205 5.12.1 Mechanisms 205 5.12.2 MolecularArchitecture 206 5.12.3 Characterization 207 5.12.4 Structure–Property Relationship 207 Acknowledgments 207 References 208 6 Coordination Polymerization: Synthesis of New Homo- and Copolymer Architectures from Ethylene and Propylene using Homogeneous Ziegler–Natta Polymerization Catalysts 217 AndrewF. MasonandGeoffrey W. Coates 6.1 Introduction, HistoricalPerspectiveand Scopeof Review 217 6.2 Primer onthe HomogeneousCoordinationPolymerization ofOlefins 218 6.2.1 Nature ofthe ActiveSpeciesand Mechanism ofInitiation 218 6.2.2 Mechanism of Propagation 219 6.2.3 MechanismsofTerminationand Chain Transfer 220 6.3 Ethylene-based Polymers 222 6.4 Propylene-basedPolymers 224 6.4.1 Atactic, Isotacticand Syndiotactic Polypropylene 224 6.4.2 HemiisotacticPolypropylene 226 6.4.3 StereoblockPolypropylene 226 6.4.4 Graft and Star Polypropylene 233 6.5 Ethylene–Propylene Copolymers 235 6.5.1 Random Ethylene–Propylene Copolymers 235
Description: