ebook img

Machine Learning with Quantum Computers PDF

321 Pages·2021·7.603 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Machine Learning with Quantum Computers

Quantum Science and Technology Maria Schuld Francesco Petruccione Machine Learning with Quantum Computers Second Edition Quantum Science and Technology SeriesEditors RaymondLaflamme,Waterloo,ON,Canada DanielLidar,LosAngeles,CA,USA ArnoRauschenbeutel,ViennaUniversityofTechnology,Vienna,Austria RenatoRenner,InstitutfürTheoretischePhysik,ETHZürich,Zürich,Switzerland JingboWang,DepartmentofPhysics,UniversityofWesternAustralia,Crawley, WA,Australia YaakovS.Weinstein,QuantumInformationScienceGroup,TheMITRE Corporation,Princeton,NJ,USA H.M.Wiseman,Brisbane,QLD,Australia SectionEditor MaximilianSchlosshauer,DepartmentofPhysics,UniversityofPortland,Portland, OR,USA The book series Quantum Science and Technology is dedicated to one of today’s mostactiveandrapidlyexpandingfieldsofresearchanddevelopment.Inparticular, the series will be a showcase for the growing number of experimental implemen- tations and practical applications of quantum systems. These will include, but are not restricted to: quantum information processing, quantum computing, and quantum simulation; quantum communication and quantum cryptography; entan- glement and other quantum resources; quantum interfaces and hybrid quantum systems; quantum memories and quantum repeaters; measurement-based quantum control and quantum feedback; quantum nanomechanics, quantum optomechanics and quantum transducers; quantum sensing and quantum metrology; as well as quantumeffectsinbiology.Lastbutnotleast,theserieswillincludebooksonthe theoretical and mathematical questions relevant to designing and understanding these systems and devices, as well as foundational issues concerning the quantum phenomena themselves. Written and edited by leading experts, the treatments will be designed for graduate students and other researchers already working in, or intendingtoenterthefieldofquantumscienceandtechnology. Moreinformationaboutthisseriesathttp://www.springer.com/series/10039 · Maria Schuld Francesco Petruccione Machine Learning with Quantum Computers Second Edition MariaSchuld FrancescoPetruccione XanaduQuantumComputingInc. SchoolofChemistryandPhysics Toronto,ON,Canada UniversityofKwaZulu-Natal Durban,SouthAfrica ISSN2364-9054 ISSN2364-9062 (electronic) QuantumScienceandTechnology ISBN978-3-030-83097-7 ISBN978-3-030-83098-4 (eBook) https://doi.org/10.1007/978-3-030-83098-4 Originallypublishedwiththetitle:SupervisedLearningwithQuantumComputers 1stedition:©SpringerNatureSwitzerlandAG2018 2ndedition:©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2021 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland DedicatedtoPeterWittek,whowassupposed tobeaco-authorofthisedition. Preface to the Second Edition Much has happened in the 3 years since the first edition of this book. Quantum machinelearninghaswitnessedatremendoussurgeinpopularity,anditsvocabulary is becoming increasingly known in mainstream quantum computing. Variational circuits, machine learning models derived from quantum circuits that depend on adaptable classical“control” parameters, have become acentralfocus ofresearch. The training of such “quantum models” is facilitated by software libraries such asPennyLane,TensorFlowQuantum andYao,whichprovidesimulatorsandcloud accesstoquantumhardware.Inotherwords,quantummachinelearningisoneofthe firstfieldsthatisnotonlydoneonpaperbutalsotestedonrealdevices.Finally,alot ofprogresshasbeenmadeinourtheoreticalunderstandingofwhathappenswhen quantumcomputerslearnfromdata—includingquestionsoftheirtrainabilitywith thegradientdescent-typealgorithmsthatareubiquitousinclassicalmachinelearning, theirproximitytokernelmethodsthatlearninhigh-dimensionalfeaturespacesand thenatureoftheseparationbetweenclassicalandquantummachinelearning.This editionthereforepresentsalotofnewmaterial,whiledroppingsectionsthatdidnot stand the test of time. It also includes perspectives on unsupervised learning and generativemodels,whichexplainsthechangeofthetitle. We want to thank Amira Abbas, Betony Adams and Daniel Park for proof- reading, and our readers for their kind feedback—in particular, Pranav Gokhale forhisunwaveringsupportinspottingtypos. Durban,SouthAfrica MariaSchuld April2021 FrancescoPetruccione vii Preface to the First Edition Quantum machine learning is a subject in the making, faced by huge expectations duetoitsparentdisciplines.Ontheonehandthereisaboomingcommercialinterest in quantum technologies, which are at the critical point of becoming available for theimplementationofquantumalgorithms,andwhichhaveexceededtherealmofa purelyacademicinterest.Ontheotherhand,machinelearningalongwithartificial intelligenceisadvertisedasacentral(ifnotthecentral)futuretechnologyintowhich companiesareboundtoinvesttoavoidbeingleftout.Combiningthesetwoworlds invariablyleadstoanoverwhelminginterestinquantummachinelearningfromthe ITindustry,aninterestthatisnotalwaysmatchedbythescientificchallengesthat researchersareonlybeginningtoexplore. To find out what quantum machine learning has to offer, its numerous possible avenues first have to be explored by an interdisciplinary community of scientists. Weintendthisbooktobeapossiblestartingpointforthisjourney,asitintroduces somekeyconcepts,ideasandalgorithmsthataretheresultofthefirstfewyearsof quantum machine learning research. Given the young nature of the discipline, we expectalotofnewanglestobeaddedtothiscollectioninduetime.Ouraimisnot to provide a comprehensive literature review, but rather to summarise themes that repeatedlyappearinquantummachinelearning,toputthemintocontextandmake themaccessibletoabroaderaudienceinordertofosterfutureresearch. On the highest level, we target readers with a background in either physics or computer science that have a sound understanding of linear algebra and computer algorithms.Havingsaidthat,quantummechanicsisafieldbasedonadvancedmath- ematicaltheory(anditdoesbynomeanshelpwithasimplephysicalintuitioneither), andtheseaccessbarriersaredifficulttocircumventevenwiththemostwell-intended introductiontoquantummechanics.Noteverysectionisthereforeeasytounderstand for readers without experience in quantum computing. However, we hope that the main concepts are within reach and try to give higher level overviews where ever possible. ix x PrefacetotheFirstEdition WethankoureditorsAldoRampioniandKirstenTheunissenfortheirsupportand patience.Ourthanksalsogotoanumberofcolleaguesandfriendswhohavehelped to discuss, inspire and proofread the book (in alphabetical order): Betony Adams, MarcelloBenedetti,GianGiacomoGuerreschi,VinayakJagadish,NathanKilloran, Camille Lombard Latune, Andrea Skolik, Ryan Sweke, Peter Wittek and Leonard Wossnig. Durban,SouthAfrica MariaSchuld March2018 FrancescoPetruccione Contents 1 Introduction ................................................... 1 1.1 Background ............................................... 2 1.1.1 MergingTwoDisciplines .............................. 2 1.1.2 TheRiseofQuantumMachineLearning ................ 5 1.1.3 FourIntersections .................................... 6 1.1.4 Fault-TolerantVersusNear-TermApproaches ............ 7 1.2 AToyExampleofaQuantumAlgorithmforClassification ....... 9 1.2.1 TheSquared-DistanceClassifier ........................ 10 1.2.2 InterferencewiththeHadamardTransformation .......... 11 1.2.3 QuantumSquared-DistanceClassifier ................... 15 1.2.4 InsightsfromtheToyExample ......................... 18 1.2.5 OrganisationoftheBook .............................. 19 References ..................................................... 20 2 MachineLearning .............................................. 23 2.1 ExamplesofTypicalMachineLearningProblems ............... 24 2.2 TheThreeIngredientsofaLearningProblem ................... 27 2.2.1 Data ............................................... 29 2.2.2 Model .............................................. 32 2.2.3 Loss ............................................... 36 2.3 RiskMinimisationinSupervisedLearning ..................... 37 2.3.1 MinimisingtheEmpiricalRiskasaProxy ............... 38 2.3.2 QuantifyingGeneralisation ............................ 40 2.3.3 Optimisation ........................................ 42 2.4 TraininginUnsupervisedLearning ............................ 44 2.5 MethodsinMachineLearning ................................ 47 2.5.1 LinearModels ....................................... 47 2.5.2 NeuralNetworks ..................................... 51 2.5.3 GraphicalModels .................................... 62 2.5.4 KernelMethods ...................................... 66 References ..................................................... 76 xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.