ebook img

Machine Learning under Resource Constraints, Volume 2: Discovery in Physics PDF

364 Pages·2022·44.029 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Machine Learning under Resource Constraints, Volume 2: Discovery in Physics

Katharina Morik, Wolfgang Rhode (Eds.) Machine Learning under Resource Constraints · Discovery in Physics Also of interest Volume 1 Machine Learning under Resource Constraints. Fundamentals Morik, Marwedel (Eds.), 2023 ISBN 978-3-11-078593-7, e-ISBN 978-3-11-078594-4 Volume 3 Machine Learning under Resource Constraints. Applications Morik, Rahnenführer, Wietfeld (Eds.), 2023 ISBN 978-3-11-078597-5, e-ISBN 978-3-11-078598-2 Machine Learning under Resource Constraints Final Report of CRC 876 Editor in Chief Katharina Morik Volume 2/3 Machine Learning under Resource Constraints Discovery in Physics Edited by Katharina Morik and Wolfgang Rhode Editors Prof. Dr. Katharina Morik TU Dortmund University Department of Computer Sciences Chair for Artificial Intelligence Computer Science 8 Otto-Hahn-Str. 12 44221 Dortmund Germany Prof. Dr. Dr. Wolfgang Rhode TU Dortmund University Department of Physics Chair for Experimental Physics 5b Otto-Hahn-Str. 4b 44221 Dortmund Germany ISBN 978-3-11-078595-1 e-ISBN (PDF) 978-3-11-078596-8 e-ISBN (EPUB) 978-3-11-078613-2 DOI https://doi.org/10.1515/9783110785968 This work is licensed under the Creative Commons Attribution 4.0 International License. For details go to https://creativecommons.org/licenses/by/4.0/. Creative Commons license terms for re-use do not apply to any content (such as graphs, figures, photos, excerpts, etc.) not original to the Open Access publication and further permission may be required from the rights holder. The obligation to research and clear permission lies solely with the party re-using the material. Library of Congress Control Number: 2022949268 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de. © 2023 with the author(s), editing © 2023 Katharina Morik and Wolfgang Rhode, published by Walter de Gruyter GmbH, Berlin/Boston This book is published open access at www.degruyter.com. Cover image: Collaborative Research Center 876 Printing and binding: CPI books GmbH, Leck www.degruyter.com | Dedication:WededicatethisbooktothememoryofourfriendandcolleagueBernhard Spaan,whowalkedthispathbetweenphysicsandcomputersciencewithusformany yearsuntilhesadlyleftusduringtheworkonthisbook. Contents 1 Introduction 1 | 1.1 Basics,Questions,andMotivation|1 1.2 MachineLearningasModeloftheScientificProcess|4 1.2.1 EarlyApproachestoScientificDiscovery|4 1.2.2 KnowledgeRepresentation–WhatisaTheory?|5 1.2.3 TowardsProbabilities|7 1.2.4 TheBigDataMove|8 1.3 FromthePhysicalTheorytothePhysicalObservable|10 1.4 FromtheMeasuredVariabletotheMeasuringPoint|18 1.5 TheEpistemologyofPhysicsinConcertwithMachineLearning|26 1.5.1 FurtherReadinginthisBook|28 2 ChallengesinParticleandAstroparticlePhysics 31 | 2.1 PhysicalMotivation,Problems,andExamples|31 2.2 AstroparticlePhysics|32 2.2.1 Experiments|34 2.3 ParticlePhysics|42 2.3.1 Experiments|42 3 KeyConceptsinMachineLearningandDataAnalysis 51 | 3.1 OverviewoftheFieldofMachineLearning|51 3.1.1 LearningTasks|52 3.1.2 ProcessingParadigmsofMachineLearning|55 3.1.3 MachineLearningPipelines|56 3.1.4 MinimumRedundancyMaximumRelevance(MRMR)|58 3.2 Optimization|59 3.2.1 StochasticGradientDescent|60 3.2.2 Newton-RaphsonOptimization|61 3.3 TheoriesofMachineLearning|62 3.3.1 ComputationalLearningTheory|64 3.4 TreeModels|66 3.4.1 EnsembleMethods|67 3.4.2 ImplementationsandHardwareConsiderations|69 3.5 NeuralNetworks|70 3.5.1 ArchitecturesofDNNs|71 3.5.2 RobustnessofDNNs|73 X | Contents 3.5.3 DeepLearningTheory|73 3.5.4 Explanations|74 3.5.5 HardwareConsiderations|75 4 DataAcquisitionandDataStructure 77 | 4.1 Introduction|77 4.2 DataAcquisition|79 4.2.1 DataAcquisitionforLHCb|79 4.2.2 DataAcquisitionforImagingAirCherenkovTelescopes|82 4.2.3 DataAcquisitionforIceCube|85 4.3 DataStructures|89 4.3.1 DataStructuresforLHCb|89 4.3.2 DataStructuresforIACTs|92 4.3.3 DataStructuresforIceCube|96 4.4 GPU-BasedTriggerDecisions|98 5 MonteCarloSimulations 103 | 5.1 LHCb:MonteCarloSimulationsandLibrariesinParticlePhysics|103 5.1.1 Astro:MonteCarloSimulations,Libraries|105 5.2 SimulationEfficiencyStudies|108 5.2.1 Corsika–ActiveLearning|108 5.2.2 ControloftheSimulation–ActiveSampling|112 5.2.3 Corsika8NewModularLibrary|118 5.2.4 ARM-ClusterforCorsika|120 5.3 ValidationoftheSimulation|126 5.3.1 Introduction|126 5.3.2 MismatchesBetweenObservedandSimulatedData|127 5.3.3 DetectionofMismatches|128 5.4 Keynote:TheMuonPuzzle|133 5.4.1 Introduction|133 5.4.2 Meta-AnalysisofMuonMeasurementsinAirShowers|134 5.4.3 MuonProductioninAirShowers|136 5.4.4 RelatedMeasurementsattheLHCatCERN|138 5.4.5 Fixed-TargetExperimentsatSPSandLHC|141 5.4.6 SummaryandOutlook|142 6 DataStorageandAccess 145 | 6.1 Introduction|145 6.2 ResearchDataManagement|145

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.