ebook img

Machine and behaviour co-design of a powerful minimally actuated hopping robot PDF

127 Pages·2015·6.77 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Machine and behaviour co-design of a powerful minimally actuated hopping robot

Machine and behaviour co- design of a powerful minimally actuated hopping robot J.J.M. Driessen s i s e h T e c n e i c S f o r e t s a M BioMechanical Engineering (BMechE) Machine and behaviour co-design of a powerful minimally actuated hopping robot Master of Science Thesis For the degree of Master of Science in Mechanical Engineering at Delft University of Technology J.J.M. Driessen Friday 30th October, 2015 Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of Technology The work in this thesis was supported by Istituto Italiano di Tecnologia (IIT). Their cooper- ation is hereby gratefully acknowledged. Copyright (cid:13)c BioMechanical Engineering (BMechE) All rights reserved. Cover Art: Gattoni, Ugo. Panic. 2012. Caravan Palace album poster. Delft University of Technology Department of BioMechanical Engineering (BMechE) The undersigned hereby certify that they have read and recommend to the Faculty of Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis entitled Machine and behaviour co-design of a powerful minimally actuated hopping robot by J.J.M. Driessen in partial fulfillment of the requirements for the degree of Master of Science Mechanical Engineering Dated: Friday 30th October, 2015 Supervisor(s): Prof.Dr. R. Featherstone Dr.ir. H. Vallery Reader(s): Prof.Dr.ir. M. Wisse Dr. S.H. Hossein Nia Kani Abstract This thesis presents the first steps of a design study on the robust hopping and balancing robot Skippy. The purpose of the overall design study is to challenge a new design approach for robots with high physical performance. This approach comprises an iterative study of machine (physical system) and behaviour (action strategy) co-design. Skippy is maximally simple in that it has only two actuators to control itself in 3D, and it is to be made from COTS components. It should be able to hop up to heights of 4m and in addition be able to balance, do acrobatic manoeuvres and survive its crashes. The goal of this thesis is to design a realistic action strategy and mechanism for Skippy in 2D to hop up to 4m that is compliant with Skippy’s required additional abilities and physical limitations. In 2D, Skippy only requires one actuator. A study that uses the new design approach is presented in this thesis. The initial model of Skippy assumes a perfect actuator and simplified transmissions. The thesis proceeds step- by-step to a more realistic model. The physical system is designed to consist of linkage mechanisms and two non-linear passive elastic elements. The action strategy is designed such that Skippy acts in saturation. Saturation is determined by various physical limits such as the limited nut velocity of the driveline’s ball screw and electrical limitations of the motor’s armature. The system’s behaviour is improved by a redesign of the physical system that moves the cause of the saturation, which increases the mechanical power output of the motor. This redesign includes tuning of inertial, dimensional and stiffness parameters. It is shown that Skippy is able to reach its target height while having basic control over lift-off momenta, which is required for performing acrobatic manoeuvres. In addition, Skippy’s balancing per- formance has been investigated. By adjusting the inertial and dimensional parameters that favour balance, the jumping height is reduced to 3.8m. This suggests that it is important to take additional abilities, like balancing, at an early stage into consideration for design decisions of the iterative design process. Step-by-step introduction and alteration of parts and their parameters in alternation with restrictions and secondary requirements have allowed for well-understood system behaviour and have built towards a more realistic system that works. Master of Science Thesis J.J.M. Driessen ii J.J.M. Driessen Master of Science Thesis Table of Contents Acknowledgements vii 1 Introduction 1 1-1 Problems in legged robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1-2 Introducing Skippy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1-3 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1-4 Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1-5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 From idea to model 7 2-1 Setting the research scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2-1-1 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2-1-2 Energy and dimension calculations . . . . . . . . . . . . . . . . . . . . . 9 2-1-3 Transmission: mechanisms and components . . . . . . . . . . . . . . . . 10 2-1-4 Passive ankle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2-1-5 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2-2 A first 2D model of Skippy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2-2-1 Dynamic model description . . . . . . . . . . . . . . . . . . . . . . . . . 16 2-2-2 Thrust conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2-2-3 Interim results: locked ankle . . . . . . . . . . . . . . . . . . . . . . . . 19 2-2-4 Ankle spring profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2-2-5 Knee torque profile: thrust and steering . . . . . . . . . . . . . . . . . . 20 2-2-6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Master of Science Thesis J.J.M. Driessen iv Table of Contents 3 Inverse dynamics approach 25 3-1 Knee torque profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3-1-1 Parabolic thrust profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3-1-2 Continuous fuzzy transition . . . . . . . . . . . . . . . . . . . . . . . . . 29 3-1-3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3-2 Driveline modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3-2-1 Linear actuation kinematics . . . . . . . . . . . . . . . . . . . . . . . . . 31 3-2-2 Spring and driveline inertia . . . . . . . . . . . . . . . . . . . . . . . . . 36 3-2-3 Inverse dynamics control . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3-2-4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4 Feedforward approach 45 4-1 Applying rotor torques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4-2 Electrical limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4-2-1 Electric circuit modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4-2-2 Current saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4-2-3 Voltage saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4-2-4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4-3 Velocity limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4-3-1 Nut velocity saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4-3-2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4-4 Energy analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4-4-1 Ball screw friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4-4-2 Energy flow analysis and results . . . . . . . . . . . . . . . . . . . . . . 56 4-5 Steering analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4-5-1 Simplified steering strategy . . . . . . . . . . . . . . . . . . . . . . . . . 57 4-5-2 Interim steering results . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4-5-3 Bilinear spring profile parameters . . . . . . . . . . . . . . . . . . . . . . 58 4-5-4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4-6 Energy-based model improvements . . . . . . . . . . . . . . . . . . . . . . . . . 61 4-6-1 Increase mechanical work . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4-6-2 Improving energy conversion . . . . . . . . . . . . . . . . . . . . . . . . 66 4-6-3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 J.J.M. Driessen Master of Science Thesis

Description:
Introduction. This thesis presents an iterative work of machine and behaviour co-design that is the first step . the quadrupeds Big Dog and Spot (Boston Dynamics, 2015). The latter two are . Chapter 6 discusses the approach (iterative design and machine and behaviour co-design), by analysing how
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.