ebook img

Lyapunov-Based Control of Robotic Systems (Automation and Control Engineering) PDF

384 Pages·2009·5.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Lyapunov-Based Control of Robotic Systems (Automation and Control Engineering)

Lyapunov-Based Control of Robotic Systems © 2010 by Taylor and Francis Group, LLC AUTOMATION AND CONTROLENGINEERING ASeries of Reference Books and Textbooks Series Editors FRANK L. LEWIS, PH.D., SHUZHI SAMGE, PH.D., FELLOWIEEE, FELLOWIFAC FELLOWIEEE Professor Professor Automation and Robotics Research Institute Interactive Digital Media Institute The University ofTexas at Arlington The National University ofSingapore Lyapunov-Based Control of Robotic Systems, Aman Behal, Warren Dixon, Darren M. Dawson, and Bin Xian System Modeling and Control with Resource-Oriented Petri Nets, Naiqi Wu and MengChu Zhou Sliding Mode Control in Electro-Mechanical Systems, Second Edition, Vadim Utkin, Jürgen Guldner, and Jingxin Shi Optimal Control: Weakly Coupled Systems and Applications, Zoran Gajic´, Myo-Taeg Lim, Dobrila Skataric´, Wu-Chung Su, and Vojislav Kecman Intelligent Systems: Modeling, Optimization, and Control,Yung C. Shin and Chengying Xu Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory, Second Edition,Frank L. Lewis; Lihua Xie and Dan Popa Feedback Control of Dynamic Bipedal Robot Locomotion, Eric R. Westervelt, Jessy W. Grizzle, Christine Chevallereau, Jun Ho Choi, and Benjamin Morris Intelligent Freight Transportation,edited by Petros A. Ioannou Modeling and Control of Complex Systems,edited by Petros A. Ioannou and Andreas Pitsillides Wireless Ad Hoc and Sensor Networks: Protocols, Performance, and Control,Jagannathan Sarangapani Stochastic Hybrid Systems,edited by Christos G. Cassandras and John Lygeros Hard Disk Drive: Mechatronics and Control,Abdullah Al Mamun, Guo Xiao Guo, and Chao Bi Autonomous Mobile Robots: Sensing, Control, Decision Making and Applications, edited by Shuzhi Sam Ge and Frank L. Lewis Neural Network Control of Nonlinear Discrete-Time Systems, Jagannathan Sarangapani Quantitative Feedback Theory: Fundamentals and Applications, Second Edition, Constantine H. Houpis, Steven J. Rasmussen, and Mario Garcia-Sanz Fuzzy Controller Design: Theory and Applications, Zdenko Kovacic and Stjepan Bogdan © 2010 by Taylor and Francis Group, LLC Lyapunov-Based Control of Robotic Systems Aman Behal University of Central Florida Orlando, Florida, U.S.A. Warren Dixon University of Florida Gainesville, Florida, U.S.A. Darren M. Dawson Clemson University Clemson, South Carolina, U.S.A. Bin Xian Tianjin University Tianjin, China Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business © 2010 by Taylor and Francis Group, LLC MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® soft- ware or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2010 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number: 978-0-8493-7025-0 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging‑in‑Publication Data Lyapunov-based control of robotic systems / Aman Behal … [et al.]. p. cm. -- (Automation and control engineering) Includes bibliographical references and index. ISBN 978-0-8493-7025-0 (hardcover : alk. paper) 1. Robots--Control systems. 2. Nonlinear control theory. 3. Lyapunov functions. I. Behal, Aman. TJ211.35.L83 1009 629.8’92--dc22 2009040275 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com © 2010 by Taylor and Francis Group, LLC To my loving wife, Hina Behal A.B. To my parents, Dwight and Belinda Dixon W.E.D To my children, Jacklyn and David D.M.D. To my parents, Kaiyong Xian and Yanfang Liu B.X. © 2010 by Taylor and Francis Group, LLC Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1 Introduction 1 1.1 History of Robotics . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Lyapunov-Based Control Philosophy . . . . . . . . . . . . . 3 1.3 The Real-Time Computer Revolution. . . . . . . . . . . . . 5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Robot Control 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Modeling and Control Objective . . . . . . . . . . . . . . . 10 2.2.1 Robot Manipulator Model and Properties . . . . . . 10 2.2.2 Control Objective . . . . . . . . . . . . . . . . . . . 12 2.3 Computed Torque Control Approaches . . . . . . . . . . . . 12 2.3.1 PD Control . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.2 Robust Control . . . . . . . . . . . . . . . . . . . . . 15 2.3.3 Sliding Mode Control . . . . . . . . . . . . . . . . . 16 2.4 Adaptive Control Design . . . . . . . . . . . . . . . . . . . . 17 2.4.1 Direct Adaptive Control . . . . . . . . . . . . . . . . 18 2.4.2 Neural Network-Based Control . . . . . . . . . . . . 24 2.5 Task-Space Control and Redundancy . . . . . . . . . . . . . 28 2.5.1 Kinematic Model . . . . . . . . . . . . . . . . . . . . 29 2.5.2 Control Objective and Error System Formulation . . 30 © 2010 by Taylor and Francis Group, LLC viii Contents 2.5.3 Computed Torque Control Development and Stabil- ity Analysis . . . . . . . . . . . . . . . . . . . . . . . 32 2.5.4 Adaptive Control Extension . . . . . . . . . . . . . . 33 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Vision-Based Systems 37 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Monocular Image-Based Geometry . . . . . . . . . . . . . . 41 3.2.1 Fixed-Camera Geometry. . . . . . . . . . . . . . . . 41 3.2.2 Euclidean Reconstruction . . . . . . . . . . . . . . . 44 3.2.3 Camera-in-Hand Geometry . . . . . . . . . . . . . . 46 3.2.4 Homography Calculation . . . . . . . . . . . . . . . 47 3.2.5 Virtual Parallax Method . . . . . . . . . . . . . . . . 50 3.3 Visual Servo Tracking . . . . . . . . . . . . . . . . . . . . . 51 3.3.1 Control Objective . . . . . . . . . . . . . . . . . . . 51 3.3.2 Control Formulation . . . . . . . . . . . . . . . . . . 54 3.3.3 Stability Analysis. . . . . . . . . . . . . . . . . . . . 56 3.3.4 Camera-in-Hand Extension . . . . . . . . . . . . . . 57 3.3.5 Simulation Results . . . . . . . . . . . . . . . . . . . 58 3.4 Continuum Robots . . . . . . . . . . . . . . . . . . . . . . . 65 3.4.1 Continuum Robot Kinematics . . . . . . . . . . . . . 69 3.4.2 Joint Variables Extraction . . . . . . . . . . . . . . . 72 3.4.3 Task-Space Kinematic Controller . . . . . . . . . . . 74 3.4.4 Simulations and Discussion . . . . . . . . . . . . . . 76 3.5 Mobile Robot Regulation and Tracking . . . . . . . . . . . 78 3.5.1 Regulation Control . . . . . . . . . . . . . . . . . . . 79 3.5.2 Tracking Control . . . . . . . . . . . . . . . . . . . . 93 3.6 Structure from Motion . . . . . . . . . . . . . . . . . . . . . 107 3.6.1 Object Kinematics . . . . . . . . . . . . . . . . . . . 107 3.6.2 Identification of Velocity . . . . . . . . . . . . . . . . 108 3.6.3 Camera-in-Hand Extension . . . . . . . . . . . . . . 113 3.6.4 Simulations and Experimental Results . . . . . . . . 119 3.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 4 Path Planning and Control 141 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 4.2 Velocity Field and Navigation Function Control for Manip- ulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 4.2.1 System Model. . . . . . . . . . . . . . . . . . . . . . 145 4.2.2 Adaptive VFC Control Objective . . . . . . . . . . . 146 © 2010 by Taylor and Francis Group, LLC Contents ix 4.2.3 Navigation Function Control Extension . . . . . . . 150 4.2.4 Experimental Verification . . . . . . . . . . . . . . . 154 4.3 Velocity Field and Navigation Function Control for WMRs 163 4.3.1 Kinematic Model . . . . . . . . . . . . . . . . . . . . 163 4.3.2 WMR Velocity Field Control . . . . . . . . . . . . . 164 4.3.3 WMR Navigation Function Control Objective . . . . 174 4.4 Vision Navigation. . . . . . . . . . . . . . . . . . . . . . . . 181 4.4.1 Geometric Modeling . . . . . . . . . . . . . . . . . . 184 4.4.2 Image-Based Path Planning . . . . . . . . . . . . . . 187 4.4.3 Tracking Control Development . . . . . . . . . . . . 191 4.4.4 Simulation Results . . . . . . . . . . . . . . . . . . . 194 4.5 Optimal Navigation and Obstacle Avoidance . . . . . . . . 209 4.5.1 Illustrative Example: Planar PBVS . . . . . . . . . . 213 4.5.2 6D Visual Servoing: Camera-in-Hand . . . . . . . . . 218 4.6 Background and Notes . . . . . . . . . . . . . . . . . . . . . 222 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 5 Human Machine Interaction 233 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 5.2 Exercise Machine . . . . . . . . . . . . . . . . . . . . . . . . 235 5.2.1 Exercise Machine Dynamics . . . . . . . . . . . . . . 236 5.2.2 Control Design with Measurable User Input . . . . . 237 5.2.3 Desired Trajectory Generator . . . . . . . . . . . . . 239 5.2.4 Control Design without Measurable User Input . . . 241 5.2.5 Desired Trajectory Generator . . . . . . . . . . . . . 246 5.2.6 Experimental Results and Discussion . . . . . . . . . 247 5.3 Steer-by-Wire . . . . . . . . . . . . . . . . . . . . . . . . . . 249 5.3.1 Control Problem Statement . . . . . . . . . . . . . . 254 5.3.2 Dynamic Model Development . . . . . . . . . . . . . 255 5.3.3 Control Development. . . . . . . . . . . . . . . . . . 258 5.3.4 Stability Analysis. . . . . . . . . . . . . . . . . . . . 259 5.3.5 Elimination of Torque Measurements: Extension . . 260 5.3.6 Numerical Simulation Results . . . . . . . . . . . . . 265 5.3.7 Experimental Results . . . . . . . . . . . . . . . . . 271 5.4 Robot Teleoperation . . . . . . . . . . . . . . . . . . . . . . 274 5.4.1 System Model. . . . . . . . . . . . . . . . . . . . . . 277 5.4.2 MIF Control Development . . . . . . . . . . . . . . . 278 5.4.3 UMIF Control Development . . . . . . . . . . . . . . 284 5.5 Rehabilitation Robot . . . . . . . . . . . . . . . . . . . . . . 295 5.5.1 Robot Dynamics . . . . . . . . . . . . . . . . . . . . 296 5.5.2 Path Planning and Desired Trajectory Generator . . 297 © 2010 by Taylor and Francis Group, LLC x Contents 5.5.3 Control Problem Formulation . . . . . . . . . . . . . 302 5.5.4 Simulation Results . . . . . . . . . . . . . . . . . . . 307 5.6 Background and Notes . . . . . . . . . . . . . . . . . . . . . 317 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 Appendices 326 A Mathematical Background 327 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 B Supplementary Lemmas and Expressions 335 B.1 Chapter 3 Lemmas . . . . . . . . . . . . . . . . . . . . . . . 335 B.1.1 Open-Loop Rotation Error System . . . . . . . . . . 335 B.1.2 Open-Loop Translation Error System . . . . . . . . 337 B.1.3 Persistence of Excitation Proof . . . . . . . . . . . . 337 B.2 Chapter 4 Lemmas and Auxiliary Expressions . . . . . . . . 339 B.2.1 Experimental Velocity Field Selection . . . . . . . . 339 B.2.2 GUB Lemma . . . . . . . . . . . . . . . . . . . . . . 340 B.2.3 Boundedness of θ˙ (t) . . . . . . . . . . . . . . . . . 342 d B.2.4 Open-Loop Dynamics for Υ(t) . . . . . . . . . . . . 344 B.2.5 Measurable Expression for L (t) . . . . . . . . . . 344 Υd B.2.6 Development of an Image Space NF and Its Gradient 345 B.2.7 Global Minimum . . . . . . . . . . . . . . . . . . . . 347 B.3 Chapter 5 Lemmas and Auxiliary Expressions . . . . . . . . 347 B.3.1 Numerical Extremum Generation . . . . . . . . . . . 347 B.3.2 Proof of Lemma 5.1 . . . . . . . . . . . . . . . . . . 349 B.3.3 Definitions from Section 5.3.2 . . . . . . . . . . . . . 350 B.3.4 Upperbound for V (t). . . . . . . . . . . . . . . . . 350 a1 B.3.5 Upper Bound Development for MIF Analysis . . . . 351 B.3.6 Teleoperator — Proof of MIF Controller Stability . . 354 B.3.7 Teleoperator — Proof of MIF Passivity . . . . . . . . 358 B.3.8 Teleoperator — Proof of UMIF Desired Trajectory Boundedness . . . . . . . . . . . . . . . . . . . . . . 359 B.3.9 Teleoperator — Proof of UMIF Controller Stability . 363 B.3.10 Teleoperator — Proof of UMIF Passivity . . . . . . . 366 B.3.11 Proof of Bound on N˜ . . . . . . . . . . . . . . . . . 367 B.3.12 Calculation of Region of Attraction. . . . . . . . . . 369 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 © 2010 by Taylor and Francis Group, LLC

Description:
Lyapunov-Based Control of Robotic Systems describes nonlinear control design solutions for problems that arise from robots required to interact with and manipulate their environments. Since most practical scenarios require the design of nonlinear controllers to work around uncertainty and measuremen
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.