ebook img

LRFD Column Design Example PDF

1100 Pages·2009·1.79 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview LRFD Column Design Example

County: Any Hwy: Any Design: BRG Date: 06/2010 CSJ: XXXX-XX-XXX Ck Dsn: BRG Date: 06/2010 Design: Column Design Example Design example is in accordance with the AASHTO LRFD Bridge Design Specifications, 5th Ed. (2010) as prescribed by TxDOT Bridge Design Manual - LRFD (May 2009). Bridge Description Plan View of Bridge Span 1 "AASHTO LRFD" refers to the AASHTO LRFD Bridge Design 90' Type TX54 Girders (0.851k/ ) ft Specification, 5th Ed. (2010) 5 Beams Spaced @ 8.00' with 3' overhangs 4.75" Haunch "BDM-LRFD" refers to the TxDOT Bridge Design Manual - LRFD (May Span 2 2009) 110' Type TX54 Girders (0.851k/ ) ft "Contr. Spec." refers to the TxDOT 5 Beams Spaced @ 8.00' with 3' overhangs Standard Specification for 5.25" Haunch Construction and Maintenance of Highways, Streets, and Bridges Span 3 (2004) 100' Type TX54 Girders (0.851k/ ) ft "TxSP" refers to TxDOT guidance, 5 Beams Spaced @ 8.00' with 3' overhangs recommendations, and standard 6.5" Haunch practice. All Spans The basic bridge geometry can be found on the Bridge Layout and Deck is 38ft wide Interior Bent Detail Sheets located in Type T551 Rail (0.382k/ft) the Appendices. 8" Thick Slab (0.100 ksf) Assume 2" Overlay @ 140 pcf (0.023 ksf) (TxSP) Use Class "C" Concrete f' =3.60 ksi (BDM-LRFD, Ch. 4, Sect. 6, Materials) c If the design requires a f' greater w =150 pcf (for weight) c c than 3.6 ksi, use Class "H" concrete. w =145 pcf (for Modulus of Elasticity calculation) c Grade 60 Reinforcing f =60 ksi y LRFDColumnDesignExample 1 June2010 Bridge Description (Con't) Superstructure NoSp (cid:2) 3 Number of Spans Span1 (cid:2) 90 ft Span2 (cid:2) 110 ft Back Span Span3 (cid:2) 100 ft Forward Span (Span2 (cid:3) Span3) AvgSp (cid:2) (cid:2) 105ft Average Span (for Bent 3) 2 BridgeL (cid:2) Span1 (cid:3) Span2 (cid:3) Span3 (cid:2) 300ft Bridge Length BridgeW (cid:2) 38ft Bridge Width NoRail (cid:2) 2 Number of T551 Rails RailW (cid:2) 1 ft Nominal Rail Width (T551) RailH (cid:2) 2 ft (cid:3) 8 in(cid:2) 2.67ft Rail Height (T551) RailWgt (cid:2) 0.382 klf Rail Weight (T551) RoadW (cid:2) BridgeW (cid:5) NoRail(cid:4)RailW (cid:2) 36ft Roadway Width Lanes (cid:2) 3 Number of Lanes (AASHTO LRFD 3.6.1.1.1) SlabTh (cid:2) 8 in Slab Thickness OlayTh (cid:2) 2 in Overlay Thickness HaunchTh (cid:2) 6.5in Haunch Thickness w (cid:2) 0.150 kcf Unit Weight of Concrete Conc w (cid:2) 0.140 kcf Unit Weight of Overlay Olay NoBm (cid:2) 5 Number of Type IV Beams BmSpac (cid:2) 8 ft Beam Spacing BmH (cid:2) 54in Beam Height (IGD) BmWgt (cid:2) 0.851 klf Beam Weight (IGD) LRFDColumnDesignExample 2 June2010 Bridge Description (Con't) Bent Cap Bent Cap Section View L (cid:2) 36 ft Cap Length Cap b (cid:2) 8 ft (cid:3) 7 in(cid:2) 8.58ft Cap Bottom Flange Width f_Cap d (cid:2) 2 ft (cid:3) 4 in(cid:2) 2.33ft Cap Ledge Height ledge b (cid:2) 4 ft (cid:3) 3 in(cid:2) 4.25ft Cap Stem Width stem d (cid:2) 4 ft (cid:3) 9 in(cid:2) 4.75ft Cap Stem Height stem b stem e (cid:2) (cid:3) 1 ft (cid:2) 3.13 ft Distance from CL of Bent Brng 2 to CL of Bearing Pad (cid:6)b (cid:9) BkBmL (cid:2) Span2 (cid:5) 2(cid:4)(cid:7) stem (cid:3) 3 in(cid:10) (cid:2) 105.25ft Length of Back Beam (cid:8) 2 (cid:11) (cid:6)b (cid:9) FwdBmL (cid:2) Span3 (cid:5) (cid:7) stem (cid:3) 3 in(cid:10) (cid:5) 3 in(cid:2) 97.38ft Length of Forward Beam (cid:8) 2 (cid:11) Typically the beam end is 3" from the face of the Inverted Tee stem, as shown in the IGEB standard. LRFDColumnDesignExample 3 June2010 Bridge Description (Con't) Bent Cap (Con't) The x-axis is along the longitudinal axis of the bent cap. The y-axis is perpendicular to the longitudinal axis of the bent cap. Footing and Drilled Shafts Footing and Drilled Shafts in the direction of the x-axis in the direction of the y-axis (the y-axis is into the page) (the x-axis is into the page) NoCol (cid:2) 1 Number of Columns L (cid:2) 8 ft Column Length Col W (cid:2) 4 ft Column Width Col H (cid:2) 50ft Column Height Col For the purposes of this design example, the column dimensions are given. For designs where a column size is not provided, choose a column size that has worked for similar bents. These dimensions are preliminary and are subject to change if the required reinforcing can not fit in the column with adequate clear distance between the reinforcing bars. L (cid:2) 18 ft Footing Length Ftg W (cid:2) 6 ft Footing Width Ftg H (cid:2) 4 ft Footing Height Ftg The footing dimensions are estimates, and are subject to change. A strut-and-tie analysis of the footing is required to determine the adequacy of these dimensions. A strut-and-tie analysis of the footing is not included in this design example. NoDS (cid:2) 2 Number of Drilled Shafts D (cid:2) 5 ft Drilled Shaft Diameter DS π 2 2 A (cid:2) D (cid:2) 19.63ft Drilled Shaft Area DS DS 4 S (cid:2) 12ft Drilled Shaft Spacing DS LRFDColumnDesignExample 4 June2010 Loading Load Sketch The fixity of the column in the x-direction is at the top of the footing. This is because there are two drilled shafts resisting the moment in this direction by coupling action, which causes a dramatic increase in the rigidity in this direction. The fixity of the column in the y-direction is below the top of the footing at a distance determined by a geotechnical engineer. The location of fixity can typically be taken as ten feet below the footing, unless the soils are poor. When using large mono-shafts, a larger distance may be appropriate. Distance to Fixity for loads along the x-axis DistanceToFixity (cid:2) 0 ft x Distance to Fixity for loads along the y-axis DistanceToFixity (cid:2) H (cid:3) 10ft (cid:2) 14ft y Ftg Design Cases Case A: Design for maximum axial load and minimum moment. Load all lanes. Case B: Design for maximum moment and minimum axial force. Use one lane loaded. Notes: Only Strength I, III, & V are applicable for column design (AASHTO LRFD 3.4.1). Use HL93 Loading with Design Speed = 60 mph. Lanes (cid:2) Lanes(cid:2) 3 Number of Lanes Loaded for Live A Load Case A Lanes (cid:2) 1 Number of Lanes Loaded for Live B Load Case B LRFDColumnDesignExample 5 June2010 Dead Load Dead Load Moment about the y-axis Distance between the Superstructure Load Resultant and the Center of the Column MomentArm (cid:2) 0ft DL Distance between the Bent Cap Load Resultant and the Center of the Column MomentArm (cid:2) 0ft Cap Dead Load from Structural Components and Nonstructural Components (DC) Rail Loads Span2 Rail (cid:2) NoRail(cid:4) (cid:4)RailWgt(cid:2) 42.0 kip Load due to Rail on Back Span Bk 2 Span3 Rail (cid:2) NoRail(cid:4) (cid:4)RailWgt(cid:2) 38.2 kip Load due to Rail on Forward Span Fwd 2 Rail (cid:2) Rail (cid:3) Rail (cid:2) 80.2 kip Total Load due to Rail Bk Fwd Slab Loads Span2 Slab (cid:2) (cid:4)BridgeW(cid:4)SlabTh(cid:4)w (cid:4)1.10 (cid:2) 229.9 kip Load due to Slab on Back Span Bk Conc 2 The weight of the slab is multiplied by 1.10 to account for weight of the haunch concrete. (TxSP) Span3 Slab (cid:2) (cid:4)BridgeW(cid:4)SlabTh(cid:4)w (cid:4)1.10 (cid:2) 209.0 kip Load due to Slab on Forward Span Fwd Conc 2 Slab (cid:2) Slab (cid:3) Slab (cid:2) 438.9 kip Total Slab due to Rail DL Bk Fwd Beam Loads BkBmL Beam (cid:2) NoBm(cid:4)BmWgt(cid:4) (cid:2) 223.9 kip Load due to Beams on Back Span Bk 2 FwdBmL Beam (cid:2) NoBm(cid:4)BmWgt(cid:4) (cid:2) 207.2 kip Load due to Beams on Forward Fwd 2 Span Beam (cid:2) Beam (cid:3) Beam (cid:2) 431.1 kip Total Load due to Beams Bk Fwd LRFDColumnDesignExample 6 June2010 Dead Load (Con't) Dead Load from Structural Components and Nonstructural Components (DC) (Con't) Bent Cap Loads 2 A (cid:2) d (cid:4)b (cid:3) d (cid:4)b (cid:2) 40.2 ft Cross sectional area of bent cap Cap ledge f_Cap stem stem Cap (cid:2) L (cid:4)A (cid:4)w (cid:2) 217.2 kip Dead Load due to the self weight of Cap Cap Conc the bent cap Column Loads Column (cid:2) H (cid:4)L (cid:4)W (cid:4)w (cid:2) 240.0 kip Dead Load due to the self weight of Col Col Col Conc the Column Total Loads Superstructure Dead Load from Back Span DL (cid:2) Rail (cid:3) Slab (cid:3) Beam (cid:2) 495.8 kip Bk Bk Bk Bk Superstructure Dead Load from Forward Span DL (cid:2) Rail (cid:3) Slab (cid:3) Beam (cid:2) 454.4 kip Fwd Fwd Fwd Fwd Axial Load due to Dead Load P (cid:2) DL (cid:3) DL (cid:3) Cap (cid:3) Column (cid:2) 1407.4 kip DC Bk Fwd Load at the bottom of the Column The load at the bottom of the column is used to design the column Dead Load Moment about the x-axis M (cid:2) e (cid:4) DL (cid:5) DL (cid:2) 129.6 kip(cid:4)ft x_DC Brng Fwd Bk Dead Load Moment about the y-axis (cid:12) (cid:13) M (cid:2) DL (cid:3) DL (cid:4)MomentArm (cid:3) Cap(cid:4)MomentArm (cid:2) 0.0kip(cid:4)ft y_DC Fwd Bk DL Cap LRFDColumnDesignExample 7 June2010 Dead Load (Con't) Dead Load from Wearing Surfaces and Utilities (DW) Wearing Surface Dead Load from Back Span Span2 Olay (cid:2) (cid:4)RoadW(cid:4)OlayTh(cid:4)w (cid:2) 46.2 kip Load due to Overlay on Back Span Bk Olay 2 Wearing Surface Dead Load from Forward Span Span3 Olay (cid:2) (cid:4)RoadW(cid:4)OlayTh(cid:4)w (cid:2) 42.0 kip Load due to Overlay on Forward Fwd Olay 2 Span Axial Load due to Dead Load P (cid:2) Olay (cid:3) Olay (cid:2) 88.2 kip DW Bk Fwd Dead Load Moment about the x-axis M (cid:2) e (cid:4) Olay (cid:5) Olay (cid:2) 13.1 ft(cid:4)kip x_DW Brng Fwd Bk Dead Load Moment about the y-axis M (cid:2) P (cid:4)MomentArm (cid:2) 0.0kip(cid:4)ft y_DW DW DL LRFDColumnDesignExample 8 June2010 Live Load HL93 Loading AASHTO LRFD 3.6.1.2.2 & AASHTO LRFD 3.6.1.2.4 Live Load Reactions Truck Load on Back Span Span2 (cid:5) 14ft 1 kip Truck (cid:2) (cid:4)32kip (cid:3) (cid:4)32 kip (cid:2) 43.9 Bk Span2 2 lane Truck Load on Forward Span 1 Span3 (cid:5) 14ft kip Truck (cid:2) (cid:4)32 kip (cid:3) (cid:4)8 kip (cid:2) 22.9 Fwd 2 Span3 lane Total Truck Load per Lane kip Truck (cid:2) Truck (cid:3) Truck (cid:2) 66.8 Rxn Bk Fwd lane Lane Load on Back Span Span2 kip Lane (cid:2) 0.64klf (cid:4) (cid:2) 35.2 Bk 2 lane Lane Load on Forward Span Span3 kip Lane (cid:2) 0.64klf (cid:4) (cid:2) 32.0 Fwd 2 lane Total Lane Load per Lane kip Lane (cid:2) Lane (cid:3) Lane (cid:2) 67.2 Rxn Bk Fwd lane LRFDColumnDesignExample 9 June2010 Live Load (Con't) Case A Multiple Presence Factor m (cid:2) 0.85 A (AASHTO LRFD Table 3.6.1.1.2-1) Transverse Moment Arm for Case A MomArm (cid:2) 0 ft LL_A Case B Multiple Presence Factor m (cid:2) 1.2 B (AASHTO LRFD Table 3.6.1.1.2-1) Transverse Moment Arm for Case B 12 ft lane(cid:4)Lanes (cid:5) 2ft RoadW B MomArm (cid:2) (cid:5) (cid:2) 13ft LL_B 2 2 LRFDColumnDesignExample 10 June2010

Description:
Design: Column Design Example Design example is in accordance with the AASHTO LRFD Bridge Design Specifications, 5th Ed. (2010) as prescribed by TxDOT Bridge Design
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.