Linko¨ pingStudiesinScienceandTechnology Dissertations,No.1728 Low-Voltage Analog-to-Digital Converters and Mixed-Signal Interfaces PrakashHarikumar DivisionofIntegratedCircuitsandSystems DepartmentofElectricalEngineering(ISY) Linko¨ pingUniversity SE-58183Linko¨ ping,Sweden Linko¨ ping2015 Low-VoltageAnalog-to-DigitalConvertersandMixed-SignalInterfaces Copyright©2015PrakashHarikumar ISBN978-91-7685-890-5 ISSN0345-7524 PrintedbyLiU-Tryck,Linko¨ping,Sweden,2015 Abstract Analog-to-digital converters (ADCs) are crucial blocks which form the interface betweenthephysicalworldandthedigitaldomain. ADCsareindispensableinnumer- ousapplicationssuchaswirelesssensornetworks(WSNs),wireless/wirelinecommu- nicationreceiversanddataacquisitionsystems. Toachievelong-term,autonomous operation for WSNs, the nodes are powered by harvesting energy from ambient sources such as solar energy, vibrational energy etc. Since the signal frequencies inthesedistributedWSNsareoftenlow,ultra-low-powerADCswithlowsampling ratesarerequired. Theadventofnewwirelessstandardswithever-increasingdata ratesandbandwidthnecessitatesADCscapableofmeetingthedemands. Wireless standardssuchasGSM,GPRS,LTEandWLANrequireADCswithseveraltensof MS/sspeedandmoderateresolution(8-10bits). SincetheseADCsareincorporated into battery-powered portable devices such as cellphones and tablets, low power consumptionfortheADCsisessential. Thefirstcontributionisanultra-low-power8-bit,1kS/ssuccessiveapproximation register(SAR)ADCthathasbeendesignedandfabricatedina65-nmCMOSprocess. ThetargetapplicationfortheADCisanautonomously-poweredsoil-moisturesensor node. At V = 0.4 V, the ADC consumes 717 pW and achieves an FoM = DD 3.19fJ/conv-stepwhilemeetingthetargeteddynamicandstaticperformance. The 8-bitADCfeaturesaleakage-suppressedS/Hcircuitwithboostedcontrolvoltage whichachieves>9-bitlinearity. Abinary-weightedcapacitivearraydigital-to-analog converter (DAC) is employed with a very low, custom-designed unit capacitor of 1.9fF.ConsequentlytheareaoftheADCandpowerconsumptionarereduced. The ADCachievesanENOBof7.81bitsatnear-Nyquistinputfrequency. Thecorearea occupiedbytheADCisonly0.0126mm2. The second contribution is a 1.2 V, 10 bit, 50 MS/s SAR ADC designed and implementedin65nmCMOSaimedatcommunicationapplications. Formedium-to- highsamplingrates,theDACreferencesettlingposesaspeedbottleneckincharge- redistributionSARADCsduetotheringingassociatedwiththeparasiticinductances. Although SAR ADCs have been the subject of intense research in recent years, scantattentionhasbeenlaidonthedesignofhigh-performanceon-chipreference voltagebuffers. Theestimationofimportantdesignparametersofthebufferaswell iv criticalspecificationssuchaspower-supplysensitivity,outputnoise,offset,settling timeandstabilityhavebeenelaborateduponinthisdissertation. Theimplemented bufferconsistsofatwo-stageoperationaltransconductanceamplifier(OTA)combined withreplicasource-follower(SF)stages. The10-bitSARADCutilizessplit-array capacitiveDACstoreduceareaandpowerconsumption. Inpost-layoutsimulation whichincludestheentirepadframeandassociatedparasitics,theADCachievesan ENOBof9.25bitsatasupplyvoltageof1.2V,typicalprocesscornerandsampling frequencyof50MS/sfornear-Nyquistinput. Excludingthereferencevoltagebuffer, theADCconsumes697µWandachievesanenergyefficiencyof25fJ/conversion-step whileoccupyingacoreareaof0.055mm2. Thethirdcontributioncomprisesfivedisparateworksinvolvingthedesignofkey peripheralblocksoftheADCsuchasreferencevoltagebufferandprogrammable gainamplifier(PGA)aswellaslow-voltage,multi-stageOTAs. Theseworksarea) Designofa1V,fullydifferentialOTAwhichsatisfiesthedemandingspecifications ofaPGAfora9-bitSARADCin28nmUTBBFDSOICMOS.Whileconsuming 2.9 µW, the PGA meets the various performance specifications over all process corners and a temperature range of [ 20 C +85 C]. b) Since FBB in the 28 nm ◦ ◦ − FDSOIprocessallowswidetuningofthethresholdvoltageandsubstantialboostingof thetransconductance,anultra-low-voltagefullydifferentialOTAwithV =0.4V DD hasbeendesignedtosatisfythecomprehensivespecificationsofageneral-purpose OTAwhilelimitingthepowerconsumptionto785nW.c)Designandimplementation ofapower-efficientreferencevoltagebufferin1.8V,180nmCMOSfora10-bit, 1 MS/s SAR ADC in an industrial fingerprint sensor SoC. d) Comparison of two previously-published frequency compensation schemes on the basis of unity-gain frequencyandphasemarginonathree-stageOTAdesignedina1.1V,40-nmCMOS process.Simulationresultshighlightthebenefitsofsplit-lengthindirectcompensation overthenestedMillercompensationscheme. e)Designofananalogfront-end(AFE) satisfyingtherequirementsforacapacitivebody-coupledcommunicationreceiverin a1.1V,40-nmCMOSprocess. TheAFEconsistsofacascadeofthreeamplifiers followedbyaSchmitttriggeranddigitalbuffers. Eachamplifierutilizesatwo-stage OTAwithsplit-lengthcompensation. Popula¨rvetenskaplig sammanfattning Analog-till-digitalomvandlare(ADC)a¨rviktigabyggstenarfo¨rattkonverterasig- naleridenfysiskava¨rldentilldendigitaladoma¨nen. AD-omvandlarea¨rno¨dva¨ndiga i flera applikationer som tra˚dlo¨sa sensorna¨tverk (WSN), tra˚dlo¨s/tra˚dbundna kom- munikationsmottagareochdatainsamlingssystem. Fo¨rattgetra˚dlo¨sasensornoder la˚ngautonomlivsla¨ngdkandeutvinnaenergifra˚nsinomgivningexempelvisfra˚n solenergi,ro¨relseenergietc. Eftersomfrekvensenpa˚insignalernaidessadistribuerade sensornoderoftaa¨rla˚gbeho¨vsAD-omvandlaremedultrala˚geffektfo¨rbrukningochla˚g samplingshastighet. A¨venskapandetavnyatra˚dlo¨sastandardermedsta¨ndigto¨kande datatakter och bandbredd kra¨ver AD-omvandlare som kan tillgodose dessa krav. Tra˚dlo¨sastandardersomGSM,GPRS,LTEochWLANbeho¨verAD-omvandlare medsamplingshastigheterpa˚fleratiotalsmiljonersamplingarpersekundochmoderat upplo¨sning(8-10bitar). EftersomAD-omvandlareanva¨ndsibatteridrivnaportabla enhetersommobiltelefonerochsurfplattaa¨ra¨venla˚geffektfo¨rbrukningviktigt. Detfo¨rstabidrageta¨ren8-bit,1kS/ssuccesivapproximationsregister(SAR)AD- omvandlaremedultrala˚geffektfo¨rbrukningdesignadochtillverkadien65-nmCMOS process. Applikationena¨renjordfuktighetssensornodsomsko¨rdarenergifra˚nsin omgivning. Videnmatningsspa¨nningpa˚ 0.4Vfo¨rbrukarAD-omvandlaren717pW ochharenFoMpa˚3,19fJ/konverteringsamtidigtsomdenmo¨terkravenpa˚dynamisk ochstatiskprestanda. AD-omvandlarenharenla¨ckda¨mpandeS/Hkretsmedboost kontrollsomna˚r>9bitarslinja¨ritet. Endigital-till-analogomvandlare(DAC)med bina¨rviktadkapacitivarrayanva¨nds,arrayenanva¨nderenva¨ldigtlitenspecialgjord enhetskapacitanspa˚ 1,9fFfo¨rattreduceraba˚deareanocheffektfo¨rbrukningenav AD-omvandlaren. Denna˚renENOBpa˚7,81bitarfo¨rinfrekvenserna¨raNyquistfrek- vensen. AD-omvandlarensareaa¨rbara0,0126mm2. Detandrabidrageta¨ren1,2V,10-bit,50MS/sSARAD-omvandlaredesignad ochimplementeradi65-nmCMOSfo¨rkommunikationsapplikationer. Fo¨rmedelho¨ga tillho¨gasamplingshastigheterbegra¨nsarinsva¨ngningstidenfo¨rDA-omvandlarensref- erensspa¨nninghastigheteniladdningsredistributionsSARAD-omvandlarepa˚ grund avringningarorsakadavparasitiskainduktanser. TrotsattSARAD-omvandlarehar vi varitfokusfo¨rintensivforskningdesenastea˚renharintemycketforskninggjortspa˚ ho¨gpresterandeintegreradespa¨nningsreferensbuffrar. Estimeringavviktigadesign parametrarfo¨rbuffernochkritiskaspecifikationersomka¨nslighetmota¨ndringarimat- ningsspa¨nningen,utsignalsbrus,offset,insva¨ngningstidochstabilitetharunderso¨kts idennaavhandling. Denimplementeradebuffernbesta˚raventva˚-stegsoperation- stranskonduktansfo¨rsta¨rkare(OTA)kombineradmedettreplikerandesourcefo¨ljarsteg (SF).AD-omvandlarenanva¨nderenkapacitivDA-omvandlaremeddeladarrayfo¨ratt reduceraareanocheffektfo¨rbrukningen. Ipost-layoutsimuleringar,inklusiveallapin- narochderasassocieradeparasiter,na˚rAD-omvandlaren9,25effektivabitar(ENOB) med en matningsspa¨nning pa˚ 1,2 V, typiska processparametrar och en sampling- shastighet pa˚ 50 MS/s fo¨r insignaler na¨ra Nyquist frekvensen. Utan spa¨nnings- referensbuffernfo¨rbrukarAD-omvandlaren697µWochharenenergieffektivitetpa˚ 25fJ/konverteringmedenareapa˚ 0,055mm2. Det tredje bidraget besta˚r av fem olika arbeten besta˚ende av viktiga assister- andeblockfo¨renAD-omvandlaresomspa¨nningsreferensbufferochprogrammerbara fo¨rsta¨rkare(PGA)samtla˚gspa¨nnings,flerstegsOTAs. Dessaarbetena¨ra)Design aven1V,differentiellOTAsommo¨terkravensomsta¨llsfo¨renPGAtillen9-bitars SARAD-omvandlarei28-nmUTBBFDSOICMOS.Medeneffektfo¨rbrukningpa˚ 2,9µWna˚rPGA:nallaspecifikationernao¨verallaprocessho¨rnochfo¨rtemperaturer mellan 20 Ctill+85 C.b)EftersomFBBi28-nmFDSOItilla˚terstorajusteringar ◦ ◦ − avtro¨skelspa¨nningenochboostningavtranskonduktansen,harendifferentiellOTA medenmatningsspa¨nningpa˚ 0,4Vdesignatsfo¨rattmo¨taallakravsomsta¨llspa˚ en universellOTAmedeneffektfo¨rbrukningpa˚ 785nW.c)Designochimplementation aveneffekteffektivspa¨nningsreferensbuffermedenmatningsspa¨nningpa˚ 1,8Vi 180-nm CMOS fo¨r en 10-bitars, 1 MS/s SAR AD-omvandlare fo¨r en industriell fingeravtrycksla¨sare. d)Ja¨mfo¨relseavtidigarepubliceradefrekvenskompensering- steknikerfo¨rattmo¨takravenfo¨rfo¨rsta¨rkar-bandbredds-produktenochfasmarginalen ientre-stegsOTAdesignadien1,1V,40-nmCMOSprocess. Simuleringsresultaten visadepa˚fo¨rdelarnamedenindirektkompenseringja¨mfo¨rtmedMillerkompensering. e) Design av ett analogt front-end (AFE) som tillgodoser kraven fo¨r en kapacitiv kroppskoppladkommunikationsmottagareien1,1V,40-nmCMOSprocess. AFE:n besta˚ravtreseriekoppladefo¨rsta¨rkarefo¨ljtavenSchmittriggerochendigitalbuffer. Varjefo¨rsta¨rkareanva¨nderentva˚-stegsOTAmedindirektkompensering. Preface ThisdissertationpresentstheresearchworkperformedduringtheperiodAugust2011 September2015attheDepartmentofElectricalEngineering,Linko¨pingUniversity, − Sweden. Themaincontributionsofthisdissertationareasfollows: • Design and implementation of a 0.4 V, 717 pW, 8-bit 1 kS/s SAR ADC in 65nmCMOS.TheADCfeaturesaleakage-reducedsamplingswitchwitha multi-stagechargepumptoguaranteesufficientlinearity. Acustom-designed unitcapacitorachievesreducedareaandpowerconsumptionforthecapacitive DAC. • Designandimplementationofa10-bit,50MS/sSARADCwithanon-chip referencevoltagebufferin65nmCMOS.Thespeedlimitationformedium/high- speedSARADCsduetoinaccurateDACsettlinginthepresenceofbondwire parasiticsisdiscussed. Theperformancespecificationanddesigndetailsofa high-speedreferencevoltagebufferareelaborateduponinthiswork. • Designofalow-powerPGAfora9-bitSARADCin28nmUTBBFDSOI CMOSprocess. TheRBBfeatureofthisCMOSprocessnodewasutilizedto enhancetheDCgainwhileavoidinglargeresistorsintheCMFBcircuitforthe firststage. • Design of an ultra-low-voltage fully differential OTA in 28 nm UTBB FD- SOICMOS.Withadifferentialoutputswingof0.8FS,theOTAachievesan SNR of 8.7 bits and a THD of 60.3 dB while consuming 785 nW from a − 0.4 V supply. The small-signal and large signal performance as well as the matching-constrained specifications such as PSRR, CMRR and offset have beendeterminedusingexhaustivesimulations. • Design and implementation of a power-efficient reference voltage buffer in 180nmCMOSfora10-bit, 1MS/sSARADCinafingerprintsensor. The buffermeetstherequirementsonsettlingtime,PSRR,outputnoise,stability andalsosupportsalow-powerstandbymode. viii • Comparison of two previously-published frequency compensation schemes using a three-stage OTA designed in 40 nm CMOS. Utilizing metrics such as phase margin, unity-gain frequency and total compensation capacitance, the advantages of the reversed nested indirect compensation technique are illustratedforhigh-speedmulti-stageOTAs. • DesignofareceiverAFEforcapacitivebody-coupledcommunicationin1.1V, 40nmCMOS.ThreedifferentAFEtopologiesweredesignedandcomparedin termsofnoise,gainandpowerconsumption. Thecontentsofthisdissertationarebasedonthefollowingpublications: • PaperI P.Harikumar,J.J.WiknerandA.Alvandpour,“A0.4V,sub-nW, − 8-bit1kS/sSARADCin65nmCMOSforWirelessSensorApplications”, IEEETrans. CircuitsSyst. II(submitted). • PaperII P.HarikumarandJ.J.Wikner,“A10-bit50MS/sSARADCin − 65nmCMOSwithon-chipreferencevoltagebuffer”,ElsevierIntegration,the VLSIJournal,vol.50,pp. 28-38,June2015. • PaperIII P.HarikumarandJ.J.Wikner,“DesignofaSamplingSwitch − for a 0.4 V SAR ADC Using a Multi-Stage Charge Pump”, in Proc. IEEE NorchipConf.,Tampere,Finland,pp. 1-4,Oct. 2014. • PaperIV P.HarikumarandJ.J.Wikner,“DesignofaReferenceVoltage − Bufferfora10bit,50MS/sSARADCin65nmCMOS”,inProc. IEEEInt. Symp. CircuitsSyst. (ISCAS),Lisbon,Portugal,pp. 249-252,May2015. • PaperV P.Harikumar,J.J.Wikner,andA.Alvandpour,“AFully-Differential − OTAin28nmUTBBFDSOICMOSforPGAApplications”,inProc.European Conf. CircuitTheoryandDesign(ECCTD),Trondheim,Norway,pp. 1-4,Aug. 2015. • PaperVI P.Harikumar,J.J.Wikner,andA.Alvandpour,“AnUltra-Low- − VoltageOTAin28nmUTBBFDSOICMOSUsingForwardBodyBias”,in Proc. IEEENordicCircuitsandSystemsConf. (NORCAS),Oslo,Norway,pp. 1-4,Oct. 2015. • Paper VII P. Harikumar, P. Angelov, and R. Ha¨gglund, “Design of a − ReferenceVoltageBufferfora10-bit1-MS/sSARADC”,inProc. Int. Mixed DesignofIntegratedCircuitsandSystems(MIXDES)Conf.,Lublin,Poland, pp. 185-188,June2014. • Paper VIII S. A. Aamir, P. Harikumar and J. J. Wikner, “Frequency − CompensationofHigh-Speed,Low-VoltageCMOSMultistageAmplifiers”,in ix Proc. IEEEInt. Symp. CircuitsSyst. (ISCAS),Beijing,China,pp. 381-384, May2013. Contribution: Idesignedathree-stageOTAin40nmCMOSandemployed twofrequencycompensationschemesonit. Icarriedouttherelevantsimula- tionsandplayedamajorroleinmanuscriptpreparation. Aamirdesignedand simulatedthefour-stageOTAin65nmCMOSandwasinvolvedinmanuscript preparation. • PaperIX P.Harikumar,M.I.Kazim,andJ.J.Wikner,“Ananalogreceiver − front-endforcapacitivebody-coupledcommunication”,inProc. IEEENorchip Conf.,Copenhagen,Denmark,pp. 1-4,Nov. 2012. Contribution: Idesignedatwo-stageOTAin40nmCMOSaswellasthethree AFEtopologies. Icarriedoutthenecessarysimulationsandplayedamajor roleinmanuscriptpreparation. Thecalculationofthenoiselevelallowedfor theAFEwasprovidedbyJacob. Irfanwasresponsibleforincludingthedetails ofthehumanbodyelectricalmodelanddiscretetransceiverrealization. Thefollowingpaperswerealsopublishedduringthisperiodwhichareoutside thescopeofthisdissertation: • K.Chen,P.HarikumarandA.Alvandpour,“Designofa12.8ENOB,1kS/s PipelinedSARADCin0.35-µmCMOS”,AnalogIntegr. Circ. Sig. Process., 2015(Accepted). • M.Nielsen-Lo¨nn,P.Harikumar,J.J.Wikner,andA.Alvandpour,“Design ofEfficientCMOSRectifiersforIntegratedPiezo-MEMSEnergy-Harvesting PowerManagementSystems”,inProc. EuropeanConf. CircuitTheoryand Design(ECCTD),Trondheim,Norway,pp. 1-4,Aug. 2015. x
Description: