ebook img

Low Rank Approximation: Algorithms, Implementation, Applications PDF

260 Pages·2012·3.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Low Rank Approximation: Algorithms, Implementation, Applications

Communications and Control Engineering Forfurthervolumes: www.springer.com/series/61 SeriesEditors (cid:2) (cid:2) (cid:2) (cid:2) A.Isidori J.H.vanSchuppen E.D.Sontag M.Thoma M.Krstic Publishedtitlesinclude: StabilityandStabilizationofInfiniteDimensional SwitchedLinearSystems SystemswithApplications ZhendongSunandShuzhiS.Ge Zheng-HuaLuo,Bao-ZhuGuoandOmerMorgul SubspaceMethodsforSystemIdentification NonsmoothMechanics(Secondedition) TohruKatayama BernardBrogliato DigitalControlSystems NonlinearControlSystemsII IoanD.LandauandGianlucaZito AlbertoIsidori MultivariableComputer-controlledSystems L2-GainandPassivityTechniquesinNonlinearControl EfimN.RosenwasserandBernhardP.Lampe ArjanvanderSchaft DissipativeSystemsAnalysisandControl ControlofLinearSystemswithRegulationandInput (Secondedition) Constraints BernardBrogliato,RogelioLozano,BernhardMaschke AliSaberi,AntonA.StoorvogelandPeddapullaiah andOlavEgeland Sannuti AlgebraicMethodsforNonlinearControlSystems RobustandH∞Control GiuseppeConte,ClaudeH.MoogandAnnaM.Perdon BenM.Chen PolynomialandRationalMatrices ComputerControlledSystems TadeuszKaczorek EfimN.RosenwasserandBernhardP.Lampe Simulation-basedAlgorithmsforMarkovDecision ControlofComplexandUncertainSystems Processes StanislavV.EmelyanovandSergeyK.Korovin HyeongSooChang,MichaelC.Fu,JiaqiaoHuand StevenI.Marcus RobustControlDesignUsingH∞Methods IanR.Petersen,ValeryA.Ugrinovskiand IterativeLearningControl AndreyV.Savkin Hyo-SungAhn,KevinL.MooreandYangQuanChen ModelReductionforControlSystemDesign DistributedConsensusinMulti-vehicleCooperative GoroObinataandBrianD.O.Anderson Control WeiRenandRandalW.Beard ControlTheoryforLinearSystems HarryL.Trentelman,AntonStoorvogelandMaloHautus ControlofSingularSystemswithRandomAbrupt Changes FunctionalAdaptiveControl El-KébirBoukas SimonG.FabriandVisakanKadirkamanathan NonlinearandAdaptiveControlwithApplications Positive1Dand2DSystems AlessandroAstolfi,DimitriosKaragiannisandRomeo TadeuszKaczorek Ortega IdentificationandControlUsingVolterraModels Stabilization,OptimalandRobustControl FrancisJ.DoyleIII,RonaldK.PearsonandBabatunde AzizBelmiloudi A.Ogunnaike ControlofNonlinearDynamicalSystems Non-linearControlforUnderactuatedMechanical FelixL.Chernous’ko,IgorM.AnanievskiandSergey Systems A.Reshmin IsabelleFantoniandRogelioLozano PeriodicSystems RobustControl(Secondedition) SergioBittantiandPatrizioColaneri JürgenAckermann DiscontinuousSystems FlowControlbyFeedback YuryV.Orlov OleMortenAamoandMiroslavKrstic ConstructionsofStrictLyapunovFunctions LearningandGeneralization(Secondedition) MichaelMalisoffandFrédéricMazenc MathukumalliVidyasagar ControllingChaos ConstrainedControlandEstimation HuaguangZhang,DerongLiuandZhiliangWang GrahamC.Goodwin,MariaM.Seronand JoséA.DeDoná StabilizationofNavier-StokesFlows ViorelBarbu RandomizedAlgorithmsforAnalysisandControl ofUncertainSystems DistributedControlofMulti-agentNetworks RobertoTempo,GiuseppeCalafioreandFabrizio WeiRenandYongcanCao Dabbene Ivan Markovsky Low Rank Approximation Algorithms, Implementation, Applications IvanMarkovsky SchoolofElectronics&ComputerScience UniversityofSouthampton Southampton,UK [email protected] Additionalmaterialtothisbookcanbedownloadedfromhttp://extras.springer.com ISSN0178-5354 CommunicationsandControlEngineering ISBN978-1-4471-2226-5 e-ISBN978-1-4471-2227-2 DOI10.1007/978-1-4471-2227-2 SpringerLondonDordrechtHeidelbergNewYork BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressControlNumber:2011942476 ©Springer-VerlagLondonLimited2012 Apartfromanyfairdealingforthepurposesofresearchorprivatestudy,orcriticismorreview,asper- mittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced, storedortransmitted,inanyformorbyanymeans,withthepriorpermissioninwritingofthepublish- ers,orinthecaseofreprographicreproductioninaccordancewiththetermsoflicensesissuedbythe CopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethosetermsshouldbesentto thepublishers. Theuseofregisterednames,trademarks,etc.,inthispublicationdoesnotimply,evenintheabsenceofa specificstatement,thatsuchnamesareexemptfromtherelevantlawsandregulationsandthereforefree forgeneraluse. Thepublishermakesnorepresentation,expressorimplied,withregardtotheaccuracyoftheinformation containedinthisbookandcannotacceptanylegalresponsibilityorliabilityforanyerrorsoromissions thatmaybemade. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Mathematicalmodelsareobtainedfromfirstprinciples(naturallaws,interconnec- tion, etc.) and experimental data. Modeling from first principles is common in naturalsciences,whilemodelingfromdataiscommoninengineering.Inengineer- ing, often experimental data are available and a simple approximate model is pre- ferredtoacomplicateddetailedone.Indeed,althoughoptimalpredictionandcon- trolofacomplex(high-order,nonlinear,time-varying)systemiscurrentlydifficult toachieve,robust analysisanddesignmethods,basedona simple(low-order,lin- ear,time-invariant)approximatemodel,mayachievesufficientlyhighperformance. Thisbookaddressestheproblemofdataapproximationbylow-complexitymodels. A unifying theme of the book is low rank approximation: a prototypical data modelingproblem. The rank of a matrix constructed from the data corresponds to thecomplexityofalinearmodelthatfitsthedataexactly.Thedatamatrixbeingfull rankimpliesthatthereisnoexactlowcomplexitylinearmodelforthatdata.Inthis case,theaimistofindanapproximatemodel.Oneapproachforapproximatemod- eling,consideredinthebook,istofindsmall(insomespecifiedsense)modification of the data thatrenders the modifieddata exact.The exactmodel for the modified dataisanoptimal(inthespecifiedsense)approximatemodelfortheoriginaldata. Thecorrespondingcomputationalproblemislowrankapproximation.Itallowsthe usertotradeoffaccuracyvs.complexitybyvaryingtherankoftheapproximation. Thedistancemeasureforthedatamodificationisauserchoicethatspecifiesthe desiredapproximationcriterionorreflectspriorknowledgeabouttheaccuracyofthe data.Inaddition,theusermayhavepriorknowledgeaboutthesystemthatgenerates thedata.Suchknowledgecanbeincorporatedinthemodelingproblembyimposing constraintsonthemodel.Forexample,ifthemodelisknown(orpostulated)tobe alineartime-invariantdynamicalsystem,thedatamatrixhasHankelstructureand the approximating matrix should have the same structure. This leads to a Hankel structuredlowrankapproximationproblem. A tenet of the book is: the estimation accuracy of the basic low rank approx- imation method can be improved by exploiting prior knowledge, i.e., by adding constraintsthatareknowntoholdforthedatageneratingsystem.Thispathofde- velopment leads to weighted, structured, and other constrained low rank approxi- v vi Preface mationproblems.The theory andalgorithmsof these newclasses of problemsare interestingintheirownrightandbeingapplicationdrivenarepracticallyrelevant. Stochastic estimation and deterministic approximation are two complementary aspectsofdatamodeling.Theformeraimstofindfromnoisydata,generatedbya low-complexitysystem,anestimateofthatdatageneratingsystem.Thelatteraims tofindfromexactdata,generatedbyahighcomplexitysystem,alow-complexity approximation of the data generating system. In applications both the stochastic estimation and deterministic approximation aspects are likely to be present. The dataarelikelytobeimpreciseduetomeasurementerrorsandislikelytobegener- atedbyacomplicatedphenomenonthatisnotexactlyrepresentablebyamodelin theconsideredmodelclass.Thedevelopmentofdatamodelingmethodsinsystem identification and signal processing, however, has been dominated by the stochas- tic estimation point of view. If considered, the approximation error is represented inthemainstreamdatamodelingliteratureasarandomprocess.Thisisnotnatural because the approximation error is by definition deterministic and even if consid- ered as a random process, it is not likely to satisfy standard stochastic regularity conditionssuchaszeromean,stationarity,ergodicity,andGaussianity. An exception to the stochastic paradigm in data modeling is the behavioral ap- proach, initiated by J.C. Willems in the mid-1980s. Although the behavioral ap- proachismotivatedbythedeterministicapproximationaspectofdatamodeling,it doesnotexcludethestochasticestimationapproach.Inthisbook,weusethebehav- ioralapproachasalanguagefordefiningdifferentmodelingproblemsandpresent- ingtheirsolutions.Weemphasizetheimportanceofdeterministicapproximationin datamodeling,however,weformulateandsolvestochasticestimationproblemsas lowrankapproximationproblems. Manywellknownconceptsandproblemsfromsystemsandcontrol,signalpro- cessing, and machine learning reduce to low rank approximation. Generic exam- plesinsystemtheoryaremodelreductionandsystemidentification.Theprincipal componentanalysismethodinmachinelearningisequivalenttolowrankapprox- imation, which suggests that related dimensionality reduction, classification, and informationretrievalproblemscanbephrasedaslowrankapproximationproblems. Sylvesterstructuredlowrankapproximationhasapplicationsincomputationswith polynomialsandisrelatedtomethodsfromcomputeralgebra. The developed ideas lead to algorithms, which are implemented in software. The algorithms clarify the ideas and the software implementation clarifies the al- gorithms.Indeed,thesoftwareistheultimateunambiguousdescriptionofhowthe ideas are put to work. In addition, the provided software allows the reader to re- producetheexamplesinthebookandtomodifythem.Theexpositionreflectsthe sequence theory(cid:3)→algorithms(cid:3)→implementation. Correspondingly,thetextisinterwovenwithcodethatgeneratesthenumericalex- amplesbeingdiscussed. Preface vii Prerequisitesand practiceproblems Acommonfeatureofthecurrentresearchactivityinallareasofscienceandengi- neeringisthenarrowspecialization.Inthisbook,wepickapplicationsinthebroad area of data modeling, posing and solving them as low rank approximation prob- lems.Thisunifiesseeminglyunrelatedapplicationsandsolutiontechniquesbyem- phasisingtheircommonaspects(e.g.,complexity–accuracytrade-off)andabstract- ing from the application specific details, terminology, and implementation details. Despiteofthefactthatapplicationsinsystemsandcontrol,signalprocessing,ma- chinelearning,andcomputervisionareusedasexamples,theonlyrealprerequisites forfollowingthepresentationisknowledgeoflinearalgebra. Thebookisintendedtobeusedforselfstudybyresearchersintheareaofdata modelingandbyadvancedundergraduate/graduatelevelstudentsasacomplemen- tary text for a course on system identification or machine learning. In either case, theexpectedknowledgeisundergraduatelevellinearalgebra.Inaddition,MATLAB codeisused,sothatfamiliaritywithMATLABprogramminglanguageisrequired. Passivereadingofthebookgivesabroadperspectiveonthesubject.Deeperun- derstanding,however,requiresactiveinvolvement,suchassupplyingmissingjusti- ficationofstatementsandspecificexamplesofthegeneralconcepts,applicationand modificationofpresentedideas,andsolutionoftheprovidedexercisesandpractice problems. There are two types of practice problem: analytical, asking for a proof ofastatementclarifyingorexpandingthematerialinthebook,andcomputational, askingforexperimentswithrealorsimulateddataofspecificapplications.Mostof theproblemsareeasytomediumdifficulty.Afewproblems(markedwithstars)can beusedassmallresearchprojects. Thecodeinthebook,availablefrom http://extra.springer.com/ hasbeentestedwithMATLAB7.9,runningunderLinux,andusestheOptimization Toolbox4.3,ControlSystemToolbox8.4,andSymbolicMathToolbox5.3.Aver- sion of the code that is compatible with Octave (a free alternative to MATLAB) is alsoavailablefromthebook’swebpage. Acknowledgements AnumberofindividualsandtheEuropeanResearchCouncilcontributedandsup- ported me during the preparation of the book. Oliver Jackson—Springer’s edi- tor (engineering)—encouraged me to embark on the project. My colleagues in ESAT/SISTA,K.U.LeuvenandECS/ISIS,Southampton,UKcreatedtherighten- vironmentfordevelopingtheideasinthebook.Inparticular,IamindebttoJanC. Willems (SISTA) for his personal guidance and example of critical thinking. The behavioralapproachthatJaninitiatedintheearly1980’sispresentinthisbook. Maarten De Vos, Diana Sima, Konstantin Usevich, and Jan Willems proofread chaptersofthebookandsuggestedimprovements.Igratefullyacknowledgefunding viii Preface fromtheEuropeanResearchCouncilundertheEuropeanUnion’sSeventhFrame- workProgramme(FP7/2007–2013)/ERCGrantagreementnumber258581“Struc- turedlow-rankapproximation:Theory,algorithms,andapplications”. Southampton,UK IvanMarkovsky Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 ClassicalandBehavioralParadigmsforDataModeling . . . . . . 1 1.2 MotivatingExampleforLowRankApproximation . . . . . . . . . 3 1.3 OverviewofApplications . . . . . . . . . . . . . . . . . . . . . . 7 1.4 OverviewofAlgorithms . . . . . . . . . . . . . . . . . . . . . . . 21 1.5 LiterateProgramming . . . . . . . . . . . . . . . . . . . . . . . . 24 1.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 PartI LinearModelingProblems 2 FromDatatoModels . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.1 LinearStaticModelRepresentations . . . . . . . . . . . . . . . . 35 2.2 LinearTime-InvariantModelRepresentations . . . . . . . . . . . 45 2.3 ExactandApproximateDataModeling . . . . . . . . . . . . . . . 52 2.4 UnstructuredLowRankApproximation . . . . . . . . . . . . . . 60 2.5 StructuredLowRankApproximation . . . . . . . . . . . . . . . . 67 2.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.1 SubspaceMethods . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.2 AlgorithmsBasedonLocalOptimization . . . . . . . . . . . . . . 81 3.3 DataModelingUsingtheNuclearNormHeuristic . . . . . . . . . 96 3.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4 ApplicationsinSystem,Control,andSignalProcessing . . . . . . . . 107 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.2 ModelReduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3 SystemIdentification . . . . . . . . . . . . . . . . . . . . . . . . 115 4.4 AnalysisandSynthesis . . . . . . . . . . . . . . . . . . . . . . . 122 ix x Contents 4.5 SimulationExamples . . . . . . . . . . . . . . . . . . . . . . . . 125 4.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 PartII MiscellaneousGeneralizations 5 MissingData,Centering,andConstraints . . . . . . . . . . . . . . . 135 5.1 WeightedLowRankApproximationwithMissingData . . . . . . 135 5.2 AffineDataModeling . . . . . . . . . . . . . . . . . . . . . . . . 147 5.3 ComplexLeastSquaresProblemwithConstrainedPhase . . . . . 156 5.4 ApproximateLowRankFactorizationwithStructuredFactors . . . 163 5.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6 NonlinearStaticDataModeling . . . . . . . . . . . . . . . . . . . . . 179 6.1 AFrameworkforNonlinearStaticDataModeling . . . . . . . . . 179 6.2 NonlinearLowRankApproximation . . . . . . . . . . . . . . . . 182 6.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 6.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 7 FastMeasurementsofSlowProcesses. . . . . . . . . . . . . . . . . . 199 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 7.2 EstimationwithKnownMeasurementProcessDynamics . . . . . 202 7.3 EstimationwithUnknownMeasurementProcessDynamics . . . . 204 7.4 ExamplesandReal-LifeTesting . . . . . . . . . . . . . . . . . . . 212 7.5 AuxiliaryFunctions . . . . . . . . . . . . . . . . . . . . . . . . . 222 7.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 AppendixA ApproximateSolutionof anOverdeterminedSystem ofEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 AppendixB Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 AppendixP Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 ListofCodeChunks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 FunctionsandScriptsIndex . . . . . . . . . . . . . . . . . . . . . . . . . 251 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Description:
Data Approximation by Low-complexity Models details the theory, algorithms, and applications of structured low-rank approximation. Efficient local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. Much of the text
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.