Communications and Control Engineering Ivan Markovsky Low-Rank Approximation Algorithms, Implementation, Applications Second Edition Communications and Control Engineering Series editors Alberto Isidori, Roma, Italy Jan H. van Schuppen, Amsterdam, The Netherlands Eduardo D. Sontag, Boston, USA Miroslav Krstic, La Jolla, USA Communications and Control Engineering is a high-level academic monograph series publishing research in control and systems theory, control engineering and communications. It has worldwide distribution to engineers, researchers, educators (severalofthetitlesinthisseriesfinduseasadvancedtextbooksalthoughthatisnot their primary purpose), and libraries. Theseriesreflectsthemajortechnologicalandmathematicaladvancesthathave a great impact in the fields of communication and control. The range of areas to which control and systems theory is applied is broadening rapidly with particular growth being noticeable in the fields of finance and biologically-inspired control. Books in this series generally pull together many related research threads in more matureareasofthesubjectthanthehighly-specialisedvolumesofLectureNotesin ControlandInformationSciences.Thisseries’smathematicalandcontrol-theoretic emphasis is complemented by Advances in Industrial Control which provides a much more applied, engineering-oriented outlook. Publishing Ethics: Researchers should conduct their research from research proposaltopublication inlinewithbestpracticesandcodesofconductofrelevant professional bodies and/or national and international regulatory bodies. For more details on individual ethics matters please see: https://www.springer.com/gp/authors-editors/journal-author/journal-author- helpdesk/publishing-ethics/14214 More information about this series at http://www.springer.com/series/61 Ivan Markovsky Low-Rank Approximation Algorithms, Implementation, Applications Second Edition 123 IvanMarkovsky Department ELEC Vrije Universiteit Brussel Brussels, Belgium Additional material tothis book,including lecture slides, canbedownloaded from http:// extras.springer.com. ISSN 0178-5354 ISSN 2197-7119 (electronic) Communications andControl Engineering ISBN978-3-319-89619-9 ISBN978-3-319-89620-5 (eBook) https://doi.org/10.1007/978-3-319-89620-5 LibraryofCongressControlNumber:2018939004 MATLAB® is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098,USA,http://www.mathworks.com. MathematicsSubjectClassification(2010): 93A30,93B30,93B40,37M10,41A29,62J12,49N30 1stedition:©Springer-VerlagLondonLimited2012 2ndedition:©SpringerInternationalPublishingAG,partofSpringerNature2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Simple linear models are commonly used in engineering despite of the fact that the real world is often nonlinear. At the same time as being simple, however, the models have to be accurate. Mathematical models are obtained from first princi- ples(naturallaws,interconnection,etc.)andexperimentaldata.Modelingfromfirst principlesaimsatexactmodels.Thisapproachisthedefaultoneinnaturalsciences. Modeling from data, on the other hand, allows us to tune complexity vs accuracy. Thisapproachiscommoninengineering,whereexperimentaldataisavailableand asimpleapproximatemodelispreferredtoacomplicatedexactone.Forexample, optimal control of a complex (high-order, nonlinear, time-varying) system is cur- rentlyintractable,however,usingsimple(low-order,linear,time-invariant)approxi- matemodelsandrobustcontrolmethodsmayachievesufficientlyhighperformance. Thetopicofthebookisdatamodelingbyreducedcomplexitymathematicalmodels. A unifying theme of the book is low-rank approximation: a prototypical data modeling problem. The rank of a matrix constructed from the data corresponds to thecomplexityofalinearmodelthatfitsthedataexactly.Thedatamatrixbeingfull rankimpliesthatthereisnoexactlowcomplexitylinearmodelforthatdata.Inthis case,theaimistofindanapproximatemodel.Theapproximatemodelingapproach considered in the book is to find small (in some specified sense) modification of the data that renders the modified data exact. The exact model for the modified dataisanoptimal(inthespecifiedsense)approximatemodelfortheoriginaldata. The corresponding computational problem is low-rank approximation of the data matrix.Therankoftheapproximationallowsustotrade-offaccuracyvscomplexity. Apart from the choice of the rank, the book covers two other user choices: the approximationcriterionandthematrixstructure.Thesechoicescorrespondtoprior knowledgeabouttheaccuracyofthedataandthemodelclass,respectively.Anex- ampleofamatrixstructure,calledHankelstructure,correspondstothelineartime- invariant model class. The book presents local optimization, subspace and convex relaxation-basedheuristicmethodsforaHankelstructuredlow-rankapproximation. v vi Preface Low-rank approximation is a core problem in applications. Generic examples in systems and control are model reduction and system identification. Low-rank approximationisequivalenttotheprincipalcomponentanalysismethodinmachine learning.Indeed,dimensionalityreduction,classification,andinformationretrieval problemscanbeposedandsolvedasparticularlow-rankapproximationproblems. Sylvester structured low-rank approximation has applications in computer algebra forthedecoupling,factorization,andcommondivisorcomputationofpolynomials. The book covers two complementary aspects of data modeling: stochastic esti- mation and deterministic approximation. The former aims to find from noisy data that is generated by a low-complexity system an estimate of that data generating system. The latter aims to find from exact data that is generated by a high com- plexity system a low-complexity approximation of the data generating system. In applications,boththestochasticestimationanddeterministicapproximationaspects arepresent:thedataisimpreciseduetomeasurementerrorsandispossiblygener- atedbyacomplicatedphenomenonthatisnotexactlyrepresentablebyamodelin theconsideredmodelclass.Thedevelopmentofdatamodelingmethodsinsystem identificationandsignalprocessing,however,hasbeendominatedbythestochastic estimationpointofview.Theapproximationerrorisrepresentedinthemainstream datamodelingliteratureasarandomprocess.However,theapproximationerroris deterministic,sothatitisnotnaturaltotreatitasarandomprocess.Moreover,the approximationerrordoesnotsatisfystochasticregularityconditionssuchasstation- arity,ergodicity,andGaussianity.Theseaspectscomplicatethestochasticapproach. An exception to the stochastic paradigm in data modeling is the behavioral ap- proach,initiatedbyJ.C.Willemsinthemid80’s.Althoughthebehavioralapproach ismotivatedbythedeterministicapproximationaspectofdatamodeling,itdoesnot excludethestochasticestimationapproach.Thisbookusesthebehavioralapproach asaunifyinglanguageindefiningmodelingproblemsandpresentingtheirsolutions. Thetheoryandmethodsdevelopedinthebookleadtoalgorithms,whichareim- plementedinsoftware.Thealgorithmsclarifytheideasandviceversethesoftware implementation clarifies the algorithms. Indeed, the software is the ultimate un- ambiguousdescriptionofhowthetheoryandmethodsareappliedinpractice.The softwareallowsthereadertoreproduceandtomodifytheexamplesinthebook.The expositionreflectsthesequence:theory algorithms implementation.Corre- 7→ 7→ spondingly,thetextisinterwovenwithcodethatgeneratesthenumericalexamples being discussed. The reader can try out these methods on their own problems and data.Experimentingwiththemethodsandworkingontheexerciseswouldleadyou toadeeperunderstandingofthetheoryandhands-onexperiencewiththemethods. Leuven, Belgium IvanMarkovsky January2018 Acknowledgements Anumberofindividualsandfundingagenciessupportedmeduringthepreparation of the book. Oliver Jackson—Springer’s editor engineering—encouraged me to embarkontheprojectandtopreparethissecondeditionofthebook.Mycolleagues at ESAT/STADIUS (formally SISTA), K. U. Leuven, ECS/VLC (formerly ISIS), UniversityofSouthampton,andtheDepartmentELEC,VrijeUniversiteitBrussels createdtherightenvironmentfordevelopingtheideasinthebook.Inparticular,Iam indebttoJanC.Willemsforhispersonalguidanceandexampleofcriticalthinking. ThebehavioralapproachthatJaninitiatedintheearly1980sispresentinthisbook. M. De Vos, D. Sima, K. Usevich, and J. C. Willems proofread chapters of the first edition and suggested improvements. I gratefully acknowledge funding from: (cid:129) the European Research Council (ERC) under the European Union’s Seventh FrameworkProgramme(FP7/2007–2013)/ERCGrantagreementnumber258581 “Structuredlow-rankapproximation:Theory,algorithms,andapplications”; (cid:129) theFundforScientificResearch (FWO-Vlaanderen),FWO projects G028015N “Decoupling multivariate polynomials in nonlinear system identification” and G090117N “Block-oriented nonlinear identification using Volterra series”; (cid:129) the Belgian Science Policy Office Interuniversity Attraction Poles Programme, network on “Dynamical Systems, Control, and Optimization” (DYSCO); and (cid:129) theFWO/FNRSExcellenceofScienceproject“Structuredlow-rankmatrix/tensor approximation:numericaloptimization-basedalgorithmsandapplications”. vii Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Classical and Behavioral Paradigms for Data Modeling . . . . . . . . 1 1.2 Motivating Example for Low-Rank approximation . . . . . . . . . . . . 3 1.3 Overview of Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Overview of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.5 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Part I Linear Modeling Problems 2 From Data to Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.1 Static Model Representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2 Dynamic Model Representations . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.3 Stochastic Model Representation . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.4 Exact and Approximate Data Modeling . . . . . . . . . . . . . . . . . . . . 59 2.5 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3 Exact Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.1 Kung’s Realization Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.2 Impulse Response Computation. . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.3 Stochastic System Identification. . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.4 Missing Data Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.5 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4 Approximate Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.1 Unstructured Low-Rank Approximation. . . . . . . . . . . . . . . . . . . . 100 4.2 Structured Low-Rank Approximation. . . . . . . . . . . . . . . . . . . . . . 109 4.3 Nuclear Norm Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.4 Missing Data Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.5 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 ix x Contents Part II Applications and Generalizations 5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.1 Model Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.2 System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.3 Approximate Common Factor of Two Polynomials . . . . . . . . . . . 149 5.4 Pole Placement by a Low-Order Controller . . . . . . . . . . . . . . . . . 154 5.5 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 6 Data-Driven Filtering and Control . . . . . . . . . . . . . . . . . . . . . . . . . . 161 6.1 Model-Based Versus Data-Driven Paradigms . . . . . . . . . . . . . . . . 162 6.2 Missing Data Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 6.3 Estimation and Control Examples . . . . . . . . . . . . . . . . . . . . . . . . 164 6.4 Solution via Matrix Completion . . . . . . . . . . . . . . . . . . . . . . . . . 166 6.5 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 7 Nonlinear Modeling Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 7.1 A Framework for Nonlinear Data Modeling. . . . . . . . . . . . . . . . . 174 7.2 Nonlinear Low-Rank Approximation . . . . . . . . . . . . . . . . . . . . . . 178 7.3 Computational Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 7.4 Identification of Polynomial Time-Invariant Systems . . . . . . . . . . 190 7.5 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 8 Dealing with Prior Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 8.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 8.2 Approximate Low-Rank Factorization . . . . . . . . . . . . . . . . . . . . . 206 8.3 Complex Least Squares with Constrained Phase. . . . . . . . . . . . . . 211 8.4 Blind Identification with Deterministic Input Model . . . . . . . . . . . 217 8.5 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 Appendix A: Total Least Squares .. .... .... .... .... .... ..... .... 225 Appendix B: Solutions to the Exercises.. .... .... .... .... ..... .... 233 Appendix C: Proofs .... .... ..... .... .... .... .... .... ..... .... 259 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 269
Description: